Module redvox.tests
Tests module
Expand source code
"""
Tests module
"""
import typing
import numpy
import os
import unittest
TEST_DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_data")
LA_TEST_DATA_DIR = os.path.join(TEST_DATA_DIR, "location_analyzer_test_data")
APIX_READER_TEST_DATA_DIR = os.path.join(TEST_DATA_DIR, "apix_reader_test_data")
def test_data(file: str) -> str:
return os.path.join(TEST_DATA_DIR, file)
class ArraysTestCase(unittest.TestCase):
def setUp(self):
self.empty_array = numpy.array([])
def assertArraysEqual(self, a1: numpy.ndarray, a2: numpy.ndarray):
self.assertTrue(numpy.array_equal(a1, a2), msg="\n{} \n!=\n {}".format(a1, a2))
def assertSampledArray(self, array: numpy.ndarray, expected_size: int, samples: typing.List, values: typing.List):
if len(array) != expected_size:
self.assertEqual(len(array), expected_size)
sampled_array = array.take(samples)
self.assertArraysEqual(sampled_array, numpy.array(values))
@staticmethod
def as_array(lst: typing.List) -> numpy.ndarray:
return numpy.array(lst)
Sub-modules
redvox.tests.api1000
redvox.tests.api900
redvox.tests.cli
redvox.tests.cloud
redvox.tests.common
redvox.tests.event_stream_test
-
- There is a known issue when exiting programs in which a DataWindow has been created. This issue can be mitigated by explicitly deleting the …
redvox.tests.ios_value_test
-
Testing DataWindowArrow
redvox.tests.local_tests
-
tests that cannot be sent to git, but must pass are here
redvox.tests.me_test_big
-
Data set available at: https://drive.google.com/file/d/14YjOjS3Tvm8I3M84KIPxgCzsVDbUMwoM/view?usp=sharing …
redvox.tests.moar_test
-
Testing DataWindowArrow
redvox.tests.more tests
redvox.tests.my_tests
redvox.tests.pyarrow_demo
redvox.tests.repr_test
redvox.tests.run_me_test
redvox.tests.session_model_test
redvox.tests.test_settings
Functions
def test_data(file: str) ‑> str
-
Expand source code
def test_data(file: str) -> str: return os.path.join(TEST_DATA_DIR, file)
Classes
class ArraysTestCase (methodName='runTest')
-
A class whose instances are single test cases.
By default, the test code itself should be placed in a method named 'runTest'.
If the fixture may be used for many test cases, create as many test methods as are needed. When instantiating such a TestCase subclass, specify in the constructor arguments the name of the test method that the instance is to execute.
Test authors should subclass TestCase for their own tests. Construction and deconstruction of the test's environment ('fixture') can be implemented by overriding the 'setUp' and 'tearDown' methods respectively.
If it is necessary to override the init method, the base class init method must always be called. It is important that subclasses should not change the signature of their init method, since instances of the classes are instantiated automatically by parts of the framework in order to be run.
When subclassing TestCase, you can set these attributes: * failureException: determines which exception will be raised when the instance's assertion methods fail; test methods raising this exception will be deemed to have 'failed' rather than 'errored'. * longMessage: determines whether long messages (including repr of objects used in assert methods) will be printed on failure in addition to any explicit message passed. * maxDiff: sets the maximum length of a diff in failure messages by assert methods using difflib. It is looked up as an instance attribute so can be configured by individual tests if required.
Create an instance of the class that will use the named test method when executed. Raises a ValueError if the instance does not have a method with the specified name.
Expand source code
class ArraysTestCase(unittest.TestCase): def setUp(self): self.empty_array = numpy.array([]) def assertArraysEqual(self, a1: numpy.ndarray, a2: numpy.ndarray): self.assertTrue(numpy.array_equal(a1, a2), msg="\n{} \n!=\n {}".format(a1, a2)) def assertSampledArray(self, array: numpy.ndarray, expected_size: int, samples: typing.List, values: typing.List): if len(array) != expected_size: self.assertEqual(len(array), expected_size) sampled_array = array.take(samples) self.assertArraysEqual(sampled_array, numpy.array(values)) @staticmethod def as_array(lst: typing.List) -> numpy.ndarray: return numpy.array(lst)
Ancestors
- unittest.case.TestCase
Subclasses
- EvenlySampledChannelTests
- InterleavedChannelTests
- ModuleFunctionTests
- UnevenlySampledChannelTests
- WrappedRedvoxPacketTests
- ModuleFunctionTests
Static methods
def as_array(lst: List) ‑> numpy.ndarray
-
Expand source code
@staticmethod def as_array(lst: typing.List) -> numpy.ndarray: return numpy.array(lst)
Methods
def assertArraysEqual(self, a1: numpy.ndarray, a2: numpy.ndarray)
-
Expand source code
def assertArraysEqual(self, a1: numpy.ndarray, a2: numpy.ndarray): self.assertTrue(numpy.array_equal(a1, a2), msg="\n{} \n!=\n {}".format(a1, a2))
def assertSampledArray(self, array: numpy.ndarray, expected_size: int, samples: List, values: List)
-
Expand source code
def assertSampledArray(self, array: numpy.ndarray, expected_size: int, samples: typing.List, values: typing.List): if len(array) != expected_size: self.assertEqual(len(array), expected_size) sampled_array = array.take(samples) self.assertArraysEqual(sampled_array, numpy.array(values))
def setUp(self)
-
Hook method for setting up the test fixture before exercising it.
Expand source code
def setUp(self): self.empty_array = numpy.array([])