Module redvox.common.sensor_data
Defines generic sensor data and data for API-independent analysis all timestamps are integers in microseconds unless otherwise stated
Expand source code
"""
Defines generic sensor data and data for API-independent analysis
all timestamps are integers in microseconds unless otherwise stated
"""
import enum
from typing import List, Dict, Optional, Tuple
from pathlib import Path
import os
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.dataset as ds
import pyarrow.parquet as pq
import redvox.common.sensor_io as io
import redvox.common.date_time_utils as dtu
from redvox.common.io import FileSystemSaveMode, FileSystemWriter as Fsw, get_json_file, json_file_to_dict
from redvox.common import offset_model as om
from redvox.common.errors import RedVoxExceptions
from redvox.common.gap_and_pad_utils import calc_evenly_sampled_timestamps, AudioWithGaps
from redvox.api1000.wrapped_redvox_packet.station_information import (
NetworkType,
PowerState,
CellServiceState,
WifiWakeLock,
ScreenState,
)
from redvox.api1000.wrapped_redvox_packet.sensors.location import LocationProvider
from redvox.api1000.wrapped_redvox_packet.sensors.image import ImageCodec
from redvox.api1000.wrapped_redvox_packet.sensors.audio import AudioCodec
# function used to translate values of enumerated columns
COLUMN_TO_ENUM_FN = {
"location_provider": lambda l: LocationProvider(l).name,
"image_codec": lambda l: ImageCodec(l).name,
"audio_codec": lambda l: AudioCodec(l).name,
"network_type": lambda l: NetworkType(l).name,
"power_state": lambda l: PowerState(l).name,
"cell_service": lambda l: CellServiceState(l).name,
"wifi_wake_lock": lambda l: WifiWakeLock(l).name,
"screen_state": lambda l: ScreenState(l).name,
}
# columns that cannot be interpolated
NON_INTERPOLATED_COLUMNS = ["compressed_audio", "image"]
# columns that are not numeric but can be interpolated
NON_NUMERIC_COLUMNS = list(COLUMN_TO_ENUM_FN.keys())
class SensorType(enum.Enum):
"""
Enumeration of possible types of sensors to read data from
"""
UNKNOWN_SENSOR = 0 # unknown sensor
ACCELEROMETER = 1 # meters/second^2
AMBIENT_TEMPERATURE = 2 # degrees Celsius
AUDIO = 3 # normalized counts
COMPRESSED_AUDIO = 4 # bytes (codec specific)
GRAVITY = 5 # meters/second^2
GYROSCOPE = 6 # radians/second
IMAGE = 7 # bytes (codec specific)
LIGHT = 8 # lux
LINEAR_ACCELERATION = 9 # meters/second^2
LOCATION = 10 # See standard
MAGNETOMETER = 11 # microtesla
ORIENTATION = 12 # radians
PRESSURE = 13 # kilopascal
PROXIMITY = 14 # on, off, cm
RELATIVE_HUMIDITY = 15 # percentage
ROTATION_VECTOR = 16 # Unitless
INFRARED = 17 # this is proximity
STATION_HEALTH = 18
# Health sensors: battery charge and current level, phone internal temperature, network source and strength,
# available RAM of the system, cell service status, amount of hard disk space left, power charging state
# Wi-Fi lock state, cpu utilization, screen state, and screen brightness
BEST_LOCATION = 19 # See standard
VELOCITY = 20 # m/s
@staticmethod
def type_from_str(type_str: str) -> "SensorType":
"""
converts a string to a sensor type
:param type_str: string to convert
:return: a sensor type, UNKNOWN_SENSOR is the default for invalid inputs
"""
if type_str.lower() == "audio" or type_str.lower() == "mic" or type_str.lower() == "microphone":
return SensorType.AUDIO
elif type_str.lower() == "accelerometer" or type_str.lower() == "accel":
return SensorType.ACCELEROMETER
elif type_str.lower() == "ambient_temperature":
return SensorType.AMBIENT_TEMPERATURE
elif type_str.lower() == "compressed_audio":
return SensorType.COMPRESSED_AUDIO
elif type_str.lower() == "gravity":
return SensorType.GRAVITY
elif type_str.lower() == "gyroscope" or type_str.lower() == "gyro":
return SensorType.GYROSCOPE
elif type_str.lower() == "image":
return SensorType.IMAGE
elif type_str.lower() == "light":
return SensorType.LIGHT
elif type_str.lower() == "linear_acceleration" or type_str.lower() == "linear_accel":
return SensorType.LINEAR_ACCELERATION
elif type_str.lower() == "location" or type_str.lower() == "loc":
return SensorType.LOCATION
elif type_str.lower() == "best_location" or type_str.lower() == "best_loc":
return SensorType.BEST_LOCATION
elif type_str.lower() == "magnetometer" or type_str.lower() == "mag":
return SensorType.MAGNETOMETER
elif type_str.lower() == "orientation":
return SensorType.ORIENTATION
elif type_str.lower() == "pressure" or type_str.lower() == "bar" or type_str.lower() == "barometer":
return SensorType.PRESSURE
elif type_str.lower() == "proximity" or type_str.lower() == "infrared":
return SensorType.PROXIMITY
elif type_str.lower() == "relative_humidity":
return SensorType.RELATIVE_HUMIDITY
elif type_str.lower() == "rotation_vector":
return SensorType.ROTATION_VECTOR
elif type_str.lower() == "velocity":
return SensorType.VELOCITY
else:
return SensorType.UNKNOWN_SENSOR
class SensorData:
"""
Generic Redvox Sensor class for API-independent analysis
Properties:
name: string, name of sensor. REQUIRED
Protected:
_type: SensorType, enumerated type of sensor, default UNKNOWN_SENSOR
_sample_rate_hz: float, sample rate in Hz of the sensor, default np.nan, usually 1/sample_interval_s
_sample_interval_s: float, mean duration in seconds between samples, default np.nan, usually 1/sample_rate
_sample_interval_std_s: float, standard deviation in seconds between samples, default np.nan
_is_sample_rate_fixed: bool, True if sample rate is constant, default False
_timestamps_altered: bool, True if timestamps in the sensor have been altered from their original values
default False
_use_offset_model: bool, if True, use an offset model to correct timestamps, otherwise use the best known
offset. default False
_errors: RedVoxExceptions, class containing a list of all errors encountered by the sensor.
_gaps: List of Tuples of floats, timestamps of data points on the edge of gaps, default empty list
_fs_writer: FileSystemWriter, handles file system i/o parameters
_data: pyarrow Table, used to store the data when it's not written to the disk. default None
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sensor_type: SensorType = SensorType.UNKNOWN_SENSOR,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
use_temp_dir: bool = False,
):
"""
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED
:param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR
:param sensor_data: Optional pyarrow table with the timestamps and sensor data;
first column is always the timestamps,
the other columns are specific metadata and data channels in the sensor
default is None
:param sample_rate_hz: sample rate in hz of the data
:param sample_interval_s: sample interval in seconds of the data
:param sample_interval_std_s: std dev of sample interval in seconds of the data
:param is_sample_rate_fixed: if True, sample rate is constant for all data, default False
:param are_timestamps_altered: if True, timestamps in the sensor have been altered from their
original values, default False
:param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s
default False
:param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise
use the best known offset. default False
:param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False
:param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary
dir if not saving data
:param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between
the pairs of points exists to maintain sample rate and are not considered valid points.
Default None
:param show_errors: if True, show any errors encountered. Default False
:param use_temp_dir: if True, use a temp directory to save data. Default False
"""
self._errors: RedVoxExceptions = RedVoxExceptions("Sensor")
self.name: str = sensor_name
self._type: SensorType = sensor_type
self._sample_rate_hz: float = sample_rate_hz
self._sample_interval_s: float = sample_interval_s
self._sample_interval_std_s: float = sample_interval_std_s
self._is_sample_rate_fixed: bool = is_sample_rate_fixed
self._timestamps_altered: bool = are_timestamps_altered
self._use_offset_model: bool = use_offset_model_for_correction
if save_data:
save_mode = FileSystemSaveMode.DISK
elif use_temp_dir:
save_mode = FileSystemSaveMode.TEMP
else:
save_mode = FileSystemSaveMode.MEM
self._fs_writer = Fsw("", "parquet", base_dir, save_mode)
self._gaps: List[Tuple] = gaps if gaps else []
set_data_as_sensor_data = True
if sensor_data is not None:
if "timestamps" not in sensor_data.schema.names:
self._errors.append('must have a column titled "timestamps"')
elif sensor_data["timestamps"].length() > 0:
set_data_as_sensor_data = False
if calculate_stats:
self.organize_and_update_stats(sensor_data)
elif sensor_data["timestamps"].length() > 1:
self.sort_by_data_timestamps(sensor_data)
else:
self.write_pyarrow_table(sensor_data)
if set_data_as_sensor_data:
self._data = sensor_data
if show_errors:
self.print_errors()
def __repr__(self):
return (
f"name: {self.name}, "
f"type: {self._type.value}, "
f"num_samples: {self.num_samples()}, "
f"sample_rate_hz: {self._sample_rate_hz}, "
f"sample_interval_s: {self._sample_interval_s}, "
f"sample_interval_std_s: {self._sample_interval_std_s}, "
f"is_sample_rate_fixed: {self._is_sample_rate_fixed}, "
f"timestamps_altered: {self._timestamps_altered}, "
f"use_offset_model: {self._use_offset_model}, "
f"gaps: {[g for g in self._gaps]}"
)
def __str__(self):
return (
f"name: {self.name}, "
f"type: {self._type.name}, "
f"num_samples: {self.num_samples()}, "
f"sample_rate_hz: {self._sample_rate_hz}, "
f"sample_interval_s: {self._sample_interval_s}, "
f"sample_interval_std_s: {self._sample_interval_std_s}, "
f"is_sample_rate_fixed: {self._is_sample_rate_fixed}, "
f"timestamps_altered: {self._timestamps_altered}, "
f"use_offset_model: {self._use_offset_model}"
)
@staticmethod
def from_dir(
sensor_name: str,
data_path: str,
sensor_type: SensorType = SensorType.UNKNOWN_SENSOR,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
use_temp_dir: bool = False,
) -> "SensorData":
"""
init but with a path to directory containing parquet file(s) instead of a table of data
:param sensor_name: name of the sensor
:param data_path: path to the directory containing the parquet files
:param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR
:param sample_rate_hz: sample rate in hz of the data, default np.nan
:param sample_interval_s: sample interval in seconds of the data, default np.nan
:param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan
:param is_sample_rate_fixed: if True, sample rate is constant for all data, default False
:param are_timestamps_altered: if True, timestamps in the sensor have been altered from their
original values, default False
:param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s
default False
:param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise
use the best known offset. default False
:param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False
:param use_temp_dir: if True, save the data using a temporary directory. default False
:return: SensorData object
"""
result = SensorData(
sensor_name,
ds.dataset(data_path, format="parquet", exclude_invalid_files=True).to_table(),
sensor_type,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
data_path,
use_temp_dir=use_temp_dir,
)
return result
@staticmethod
def from_dict(
sensor_name: str,
sensor_data: Dict,
sensor_type: SensorType = SensorType.UNKNOWN_SENSOR,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
arrow_dir: str = "",
use_temp_dir: bool = False,
) -> "SensorData":
"""
init but with a dictionary
:param sensor_name: name of the sensor
:param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR
:param sensor_data: dict with the timestamps and sensor data; first column is always the timestamps,
the other columns are the data channels in the sensor
:param sample_rate_hz: sample rate in hz of the data, default np.nan
:param sample_interval_s: sample interval in seconds of the data, default np.nan
:param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan
:param is_sample_rate_fixed: if True, sample rate is constant for all data, default False
:param are_timestamps_altered: if True, timestamps in the sensor have been altered from their
original values, default False
:param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s
default False
:param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise
use the best known offset. default False
:param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False
:param arrow_dir: directory to save pyarrow table, default "" (current dir). default temporary dir if not
saving data
:param use_temp_dir: If True, use a temporary directory to save the data. default False
:return: SensorData object
"""
return SensorData(
sensor_name,
pa.Table.from_pydict(sensor_data),
sensor_type,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
arrow_dir,
use_temp_dir=use_temp_dir,
)
def save(self, file_name: Optional[str] = None) -> Optional[Path]:
"""
Saves the sensor to disk. Does nothing if saving is not enabled
:param file_name: Optional file name to save as. Do not include a file extension. Default None
If None, a default file name is created using this format:
[sensor_type]_[first_timestamp].json
:return: The path to the saved file or None if unable to save.
"""
if self._fs_writer.is_save_disk():
return self.to_json_file(file_name)
return None
def load(self, in_dir: str) -> "SensorData":
"""
:param in_dir: structured directory with json metadata file to load
:return: SensorData using data from files
"""
file = get_json_file(in_dir)
if file is None:
st = SensorData("LoadError")
st.append_error("File to load Sensor not found.")
return self
else:
return self.from_json_file(in_dir, file)
def set_save_mode(self, new_save_mode: FileSystemSaveMode):
"""
changes the save mode to new_save_mode
:param new_save_mode: FileSystemSaveMode to change to
"""
self._fs_writer.set_save_mode(new_save_mode)
def is_save_to_disk(self) -> bool:
"""
:return: True if sensor will be saved to disk
"""
return self._fs_writer.is_use_disk()
def set_save_to_disk(self, save: bool):
"""
:param save: If True, save to disk
"""
self._fs_writer.set_use_disk(save)
def set_file_name(self, new_file: Optional[str] = None):
"""
* set the pyarrow file name or use the default: {sensor_type}_{int(first_timestamp)}
* Do not give an extension
:param new_file: optional file name to change to; default None (use default name)
"""
self._fs_writer.file_name = new_file if new_file else f"{self._type.name}_{int(self.first_data_timestamp())}"
def full_file_name(self) -> str:
"""
:return: full name of parquet file containing the data
"""
return self._fs_writer.full_name()
def file_name(self) -> str:
"""
:return: file name without extension
"""
return self._fs_writer.file_name
def set_save_dir(self, new_dir: str = "."):
"""
set the pyarrow directory or use the default: "." (current directory)
:param new_dir: the directory to change to; default "." (use current directory)
"""
self._fs_writer.base_dir = new_dir
def save_dir(self) -> str:
"""
:return: directory containing parquet files for the sensor
"""
return self._fs_writer.save_dir()
def full_path(self) -> str:
"""
:return: the full path to the data file
"""
return self._fs_writer.full_path()
def fs_writer(self) -> Fsw:
"""
:return: FileSystemWriter object
"""
return self._fs_writer
def set_use_temp_dir(self, use_temp_dir: bool = False):
"""
:param use_temp_dir: if True, use temp dir to save data. default False
"""
self._fs_writer.set_use_temp(use_temp_dir)
def pyarrow_ds(self, base_dir: Optional[str] = None) -> ds.Dataset:
"""
:param base_dir: optional directory to use when loading the dataset. if None, use self.save_dir()
:return: the dataset stored in base_dir
"""
if base_dir is None:
base_dir = self.save_dir()
return ds.dataset(base_dir, format="parquet", exclude_invalid_files=True)
def pyarrow_table(self) -> pa.Table:
"""
:return: the table defined by the _data property or the dataset stored in self.save_dir()
"""
if self._data or self._fs_writer.is_use_mem():
return self._data
return self.pyarrow_ds().to_table()
def data_df(self) -> pd.DataFrame:
"""
:return: the pandas dataframe defined by the dataset stored in self.save_dir()
"""
return self.pyarrow_table().to_pandas()
def write_pyarrow_table(self, table: pa.Table, update_file_name: Optional[bool] = True):
"""
saves the pyarrow table to disk or to memory.
* if there is no data or there is no column named timestamps in the table, an error will be created
* if writing to disk, uses a default filename: {sensor_type}_{first_timestamp}.parquet
* uses the directory defined by self.save_dir(). Creates the directory if it doesn't exist and removes any
existing parquet files from the directory if it exists
:param table: the table to write
:param update_file_name: if True, updates the file name to match the new data. Default True
"""
if table.num_rows < 1 or "timestamps" not in table.schema.names:
self._errors.append("Attempted to write invalid table.")
elif self._fs_writer.is_save_disk():
self._fs_writer.create_dir()
if update_file_name:
self.set_file_name(f"{self.type().name}_{int(table['timestamps'][0].as_py())}")
pq.write_table(table, self.full_path())
self._data = None
else:
self._data = table
def empty_data_table(self):
"""
CAUTION: REMOVES ALL DATA AND COLUMNS FROM THE TABLE
"""
tbl = pa.Table.from_pydict({"timestamps": []})
if self._fs_writer.is_save_disk():
pq.write_table(tbl, self.full_path())
self._data = None
else:
self._data = tbl
def move_pyarrow_dir(self, new_dir: str) -> Path:
"""
Move the sensor's pyarrow files to a new directory
:param new_dir: directory to save files into
"""
old_sensor_save_dir = self.save_dir()
self.set_save_dir(os.path.join(new_dir, self._type.name))
for r, d, f in os.walk(old_sensor_save_dir):
for file in f:
self._fs_writer.create_dir()
os.rename(os.path.join(old_sensor_save_dir, file), os.path.join(self.save_dir(), file))
return Path(self.save_dir())
def errors(self) -> RedVoxExceptions:
"""
:return: errors of the sensor
"""
return self._errors
def gaps(self) -> List[Tuple]:
"""
:return: start and end timestamps of gaps in data
"""
return self._gaps
def type(self) -> SensorType:
"""
:return: type of sensor
"""
return self._type
def type_as_str(self) -> str:
"""
gets the sensor type as a string
:return: sensor type of the sensor as a string
"""
return self._type.name
def sample_rate_hz(self) -> float:
"""
:return: sample rate in Hz
"""
return self._sample_rate_hz
def sample_interval_s(self) -> float:
"""
:return: mean sample interval in seconds
"""
return self._sample_interval_s
def sample_interval_std_s(self) -> float:
"""
:return: sample interval standard deviation in seconds
"""
return self._sample_interval_std_s
def is_sample_rate_fixed(self) -> bool:
"""
:return: true if sample rate of sensor is constant
"""
return self._is_sample_rate_fixed
def is_timestamps_altered(self) -> bool:
"""
:return: true if timestamps have been changed from original data values
"""
return self._timestamps_altered
def used_offset_model(self) -> bool:
"""
:return: true if an offset model was used to perform timestamp corrections
"""
return self._use_offset_model
def sort_by_data_timestamps(self, ptable: pa.Table, ascending: bool = True):
"""
sorts the data based on timestamps
:param ptable: pyarrow table to sort
:param ascending: if True, timestamps are sorted in ascending order, else sort by descending order
"""
if ascending:
order = "ascending"
else:
order = "descending"
data = pc.take(ptable, pc.sort_indices(ptable, sort_keys=[("timestamps", order)]))
self.write_pyarrow_table(data)
def organize_and_update_stats(self, ptable: pa.Table) -> "SensorData":
"""
sorts the data by timestamps, then if the sample rate is not fixed, recalculates the sample rate, interval,
and interval std dev. If there is only one value, sets the sample rate, interval, and interval std dev
to np.nan. Updates self with the new values
:param ptable: pyarrow table to update
:return: updated version of self
"""
self.sort_by_data_timestamps(ptable)
if not self._is_sample_rate_fixed:
if self.num_samples() > 1:
timestamp_diffs = np.diff(self.data_timestamps())
self._sample_interval_s = dtu.microseconds_to_seconds(float(np.mean(timestamp_diffs)))
self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(timestamp_diffs)))
self._sample_rate_hz = np.nan if self.is_sample_interval_invalid() else 1 / self._sample_interval_s
else:
self._sample_interval_s = np.nan
self._sample_interval_std_s = np.nan
self._sample_rate_hz = np.nan
return self
def append_sensor(self, new_sensor: "SensorData", recalculate_stats: bool = False) -> "SensorData":
"""
append the new data to the sensor, update the sensor's stats on demand if it doesn't have a fixed
sample rate, then return the updated object
:param new_sensor: sensor containing data to add to the calling sensor
:param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps,
recalculate the sample rate, interval, and interval std dev, default False
:return: the updated object
"""
_arrow: pa.Table = pa.concat_tables([self.pyarrow_table(), new_sensor.pyarrow_table()])
if recalculate_stats and not self._is_sample_rate_fixed:
self.organize_and_update_stats(_arrow)
else:
self.write_pyarrow_table(_arrow)
return self
def append_data(self, new_data: List[np.array], recalculate_stats: bool = False) -> "SensorData":
"""
append the new data to the dataframe, update the sensor's stats on demand if it doesn't have a fixed
sample rate, then return the updated object
:param new_data: list of arrays containing data to add to the sensor's dataframe
:param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps,
recalculate the sample rate, interval, and interval std dev, default False
:return: the updated object
"""
_arrow = pa.concat_tables(
[
self.pyarrow_table(),
pa.Table.from_arrays(arrays=[pa.array(s) for s in new_data], names=self.data_channels()),
]
)
if recalculate_stats and not self._is_sample_rate_fixed:
self.organize_and_update_stats(_arrow)
else:
self.write_pyarrow_table(_arrow)
return self
def is_sample_interval_invalid(self) -> bool:
"""
:return: True if sample interval is np.nan or equal to 0.0
"""
return np.isnan(self._sample_interval_s) or self._sample_interval_s == 0.0
def data_timestamps(self) -> np.array:
"""
:return: the timestamps as a numpy array or [np.nan] if none exist
"""
if "timestamps" in self.pyarrow_table().schema.names:
return self.pyarrow_table()["timestamps"].to_numpy()
else:
return np.array([np.nan])
def unaltered_data_timestamps(self) -> np.array:
"""
:return: the unaltered timestamps as a numpy array
"""
if "unaltered_timestamps" in self.pyarrow_table().schema.names:
return self.pyarrow_table()["unaltered_timestamps"].to_numpy()
else:
return np.array([np.nan])
def first_data_timestamp(self) -> float:
"""
:return: timestamp of the first data point or np.nan if no timestamps
"""
return self.data_timestamps()[0]
def last_data_timestamp(self) -> float:
"""
:return: timestamp of the last data point or np.nan if no timestamps
"""
return self.data_timestamps()[-1]
def num_samples(self) -> int:
"""
:return: the number of rows (samples) in the dataframe
"""
if self.pyarrow_table():
return self.pyarrow_table().num_rows
return 0
def samples(self) -> np.ndarray:
"""
gets the non-timestamp samples of dataframe
:return: the data values of the dataframe as a numpy ndarray
"""
return self.data_df().iloc[:, 2:].T.to_numpy()
def data_channels(self) -> List[str]:
"""
:return: a list of the names of the columns (data channels) of the data
"""
if self.pyarrow_table():
return self.pyarrow_table().schema.names
return []
def get_data_channel(self, channel_name: str) -> np.array:
"""
gets the data channel specified, raises an error and lists valid fields if channel_name is not in the dataframe
:param channel_name: the name of the channel to get data for
:return: the data values of the channel as a numpy array or list of strings for enumerated channels
"""
if not self.pyarrow_table():
self._errors.append(f"WARNING: There are no channels to access in this Sensor!")
return []
_arrow = self.pyarrow_table()
if channel_name not in _arrow.schema.names:
self._errors.append(f"WARNING: {channel_name} does not exist; try one of {_arrow.schema.names}")
return []
if channel_name in NON_NUMERIC_COLUMNS:
return np.array([COLUMN_TO_ENUM_FN[channel_name](c.as_py()) for c in _arrow[channel_name]])
return _arrow[channel_name].to_numpy()
def _get_non_numeric_data_channel(self, channel_name: str) -> List[str]:
"""
get_data_channel but specifically enumerated channels
:param channel_name: the name of the channel to get data for
:return: the data values of the channel as a list of strings
"""
if not self.pyarrow_table():
self._errors.append(f"WARNING: There are no channels to access in this Sensor!")
else:
_arrow = self.pyarrow_table()
if channel_name in NON_NUMERIC_COLUMNS:
return [COLUMN_TO_ENUM_FN[channel_name](c.as_py()) for c in _arrow[channel_name]]
self._errors.append(f"WARNING: {channel_name} does not exist")
return []
def get_valid_data_channel_values(self, channel_name: str) -> np.array:
"""
gets all non-nan values from the channel specified
:param channel_name: the name of the channel to get data for
:return: non-nan values of the channel as a numpy array
"""
channel_data = self.get_data_channel(channel_name)
return channel_data[~np.isnan(channel_data)]
def _get_valid_non_numeric_data_channel_values(self, channel_name: str) -> List[str]:
"""
NOT IMPLEMENTED
return non-nan'd values; technically this evaluates an actual numeric channel first
:param channel_name:
:return:
"""
pass
def print_errors(self):
"""
print all errors to screen
"""
self._errors.print()
def extend_errors(self, errors: RedVoxExceptions):
"""
add errors to the Sensor's errors
:param errors: errors to add
"""
self._errors.extend_error(errors)
def update_data_timestamps(self, offset_model: om.OffsetModel):
"""
updates the timestamps of the data points
:param offset_model: model used to update the timestamps
"""
slope = (
dtu.seconds_to_microseconds(self._sample_interval_s) * (1 + offset_model.slope)
if self._use_offset_model
else dtu.seconds_to_microseconds(self._sample_interval_s)
)
if self._type == SensorType.AUDIO:
# use the model to update the first timestamp or add the best offset (model's intercept value)
timestamps = pa.array(
calc_evenly_sampled_timestamps(
offset_model.update_time(self.unaltered_data_timestamps()[0], self._use_offset_model),
self.num_samples(),
slope,
)
)
else:
timestamps = pa.array(
offset_model.update_timestamps(self.unaltered_data_timestamps(), self._use_offset_model)
)
self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", timestamps))
time_diffs = np.floor(np.diff(self.data_timestamps()))
if len(time_diffs) > 1:
self._sample_interval_s = dtu.microseconds_to_seconds(slope)
if self._sample_interval_s > 0:
self._sample_rate_hz = 1 / self._sample_interval_s
self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(time_diffs)))
self._timestamps_altered = True
def set_original_timestamps(self):
"""
converts all timestamps in the sensor to the original values from the data
"""
self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", self.unaltered_data_timestamps()))
self._timestamps_altered = False
def interpolate(
self, interpolate_timestamp: float, first_point: int, second_point: int = 0, copy: bool = True
) -> pa.Table:
"""
interpolates two points at the chosen timestamp. If copy is true, copies the values of the closest point,
otherwise interpolates any numerical value. Non-numeric values are set to a copy of the closest point.
:param interpolate_timestamp: timestamp to interpolate other values
:param first_point: index of first point
:param second_point: delta to second point, default 0 (same as first point)
:param copy: if True, copies the values of the first point, otherwise uses the interpolated value.
Default True
:return: pyarrow Table of interpolated points
"""
start_point = self.pyarrow_table().slice(first_point, 1).to_pydict()
if not copy and second_point:
i_p = {}
end_point = self.pyarrow_table().slice(first_point + second_point, 1).to_pydict()
first_closer = np.abs(start_point[0] - interpolate_timestamp) <= np.abs(
end_point[0] - interpolate_timestamp
)
for col in self.pyarrow_table().schema.names:
# process each column independently into new table object
if col not in NON_INTERPOLATED_COLUMNS + NON_NUMERIC_COLUMNS:
numeric_diff = end_point[col] - start_point[col]
numeric_diff = (numeric_diff / numeric_diff["timestamps"]) * (
interpolate_timestamp - start_point[col]
) + start_point[col]
i_p[col] = numeric_diff
elif col in NON_NUMERIC_COLUMNS:
if first_closer:
i_p[col] = start_point[col]
else:
i_p[col] = end_point[col]
else:
i_p = start_point
i_p["timestamps"] = [interpolate_timestamp]
return pa.Table.from_pydict(i_p)
def as_dict(self) -> dict:
"""
:return: sensor as dict
"""
return {
"name": self.name,
"type": self._type.name,
"num_samples": self.num_samples(),
"sample_rate_hz": self._sample_rate_hz,
"sample_interval_s": self._sample_interval_s,
"sample_interval_std_s": self._sample_interval_std_s,
"is_sample_rate_fixed": self._is_sample_rate_fixed,
"timestamps_altered": self._timestamps_altered,
"use_offset_model": self._use_offset_model,
"gaps": self._gaps,
"base_dir": os.path.basename(self._fs_writer.save_dir()),
"errors": self._errors.as_dict(),
}
def to_json(self) -> str:
"""
:return: sensor as json string
"""
return io.to_json(self)
def to_json_file(self, file_name: Optional[str] = None) -> Path:
"""
saves the sensor as json and data in the same directory.
:param file_name: the optional base file name. Do not include a file extension.
If None, a default file name is created using this format:
[sensor_type]_[first_timestamp].json
:return: path to json file
"""
self.write_pyarrow_table(self.pyarrow_table())
return io.to_json_file(self, file_name)
@staticmethod
def from_json_file(file_dir: str, file_name: Optional[str] = None) -> "SensorData":
"""
convert contents of json file to Sensor
:param file_dir: full path to containing directory for the file
:param file_name: optional name of file and extension to load data from; if not specified, finds the first one
:return: SensorData object
"""
if file_name is None:
file_name = get_json_file(file_dir)
if file_name is None:
result = SensorData("Empty")
result.append_error("JSON file to load Sensor from not found.")
return result
json_data = json_file_to_dict(os.path.join(file_dir, file_name))
if "name" in json_data.keys():
result = SensorData.from_dir(
json_data["name"],
file_dir,
SensorType[json_data["type"]],
json_data["sample_rate_hz"],
json_data["sample_interval_s"],
json_data["sample_interval_std_s"],
json_data["is_sample_rate_fixed"],
json_data["timestamps_altered"],
False,
json_data["use_offset_model"],
)
result.set_errors(RedVoxExceptions.from_dict(json_data["errors"]))
result.set_save_to_disk(True)
result.set_file_name()
result.set_gaps(json_data["gaps"])
else:
result = SensorData("Empty")
result.append_error(f"Loading from {file_name} failed; missing Sensor name.")
return result
def class_from_type(self) -> "SensorData":
"""
Updates the class to be a specific type of sensor based on self._type
:return: Self
"""
if self._type in SensorType:
sensor_class_from_type = {
SensorType.AUDIO: AudioSensor,
SensorType.COMPRESSED_AUDIO: CompressedAudioSensor,
SensorType.IMAGE: ImageSensor,
SensorType.LOCATION: LocationSensor,
SensorType.BEST_LOCATION: BestLocationSensor,
SensorType.STATION_HEALTH: StationHealthSensor,
SensorType.LIGHT: LightSensor,
SensorType.PRESSURE: PressureSensor,
SensorType.PROXIMITY: ProximitySensor,
SensorType.INFRARED: ProximitySensor,
SensorType.RELATIVE_HUMIDITY: RelativeHumiditySensor,
SensorType.AMBIENT_TEMPERATURE: AmbientTemperatureSensor,
SensorType.ACCELEROMETER: AccelerometerSensor,
SensorType.GYROSCOPE: GyroscopeSensor,
SensorType.MAGNETOMETER: MagnetometerSensor,
SensorType.ORIENTATION: OrientationSensor,
SensorType.GRAVITY: GravitySensor,
SensorType.LINEAR_ACCELERATION: LinearAccelerationSensor,
SensorType.ROTATION_VECTOR: RotationVectorSensor,
SensorType.VELOCITY: VelocitySensor,
SensorType.UNKNOWN_SENSOR: SensorData,
}
self.__class__ = sensor_class_from_type[self._type]
return self
def set_errors(self, errors: RedVoxExceptions):
"""
sets the errors of the Sensor
:param errors: errors to set
"""
self._errors = errors
def append_error(self, error: str):
"""
add an error to the Sensor
:param error: error to add
"""
self._errors.append(error)
def set_gaps(self, gaps: List[Tuple]):
"""
sets the gaps of the Sensor
:param gaps: gaps to set
"""
self._gaps = gaps
class AudioSensor(SensorData):
"""
Audio specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
use_temp_dir: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.AUDIO,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
use_temp_dir,
)
@staticmethod
def from_metadata(
sensor_name: str,
data: AudioWithGaps,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
use_temp_dir: bool = False,
) -> "SensorData":
"""
init but using metadata
:param sensor_name: name of the sensor
:param data: the metadata used to create the sensor
:param sample_rate_hz: sample rate in hz of the data, default np.nan
:param sample_interval_s: sample interval in seconds of the data, default np.nan
:param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan
:param is_sample_rate_fixed: if True, sample rate is constant for all data, default False
:param are_timestamps_altered: if True, timestamps in the sensor have been altered from their
original values, default False
:param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s
default False
:param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise
use the best known offset. default False
:param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False
:param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary
dir if not saving data
:param use_temp_dir: if True, save the data using a temporary directory. default False
:return: SensorData object
"""
return SensorData(
sensor_name,
data.create_timestamps(),
SensorType.AUDIO,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
use_temp_dir=use_temp_dir,
)
def get_microphone_data(self) -> np.array:
"""
:return: audio data as numpy array
"""
return super().get_data_channel("microphone")
def get_valid_microphone_data(self) -> np.array:
"""
:return: non-nan audio data as numpy array
"""
return super().get_valid_data_channel_values("microphone")
class CompressedAudioSensor(SensorData):
"""
Compressed audio specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.COMPRESSED_AUDIO,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_compressed_audio_data(self) -> np.array:
"""
:return: compressed audio data as numpy array
"""
return super().get_data_channel("compressed_audio")
def get_valid_compressed_audio_data(self) -> np.array:
"""
:return: non-nan compressed audio data as numpy array
"""
return super().get_valid_data_channel_values("compressed_audio")
def get_audio_codec_data(self) -> List[str]:
"""
:return: audio codec as list of strings
"""
return super()._get_non_numeric_data_channel("audio_codec")
def _get_valid_audio_codec_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan audio codec as list of strings
"""
pass
# return super().get_valid_data_channel_values('audio_codec')
class ImageSensor(SensorData):
"""
Image specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.IMAGE,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_image_data(self) -> np.array:
"""
:return: image data as numpy array
"""
return super().get_data_channel("image")
def get_valid_image_data(self) -> np.array:
"""
:return: non-nan image data as numpy array
"""
return super().get_valid_data_channel_values("image")
def get_image_codec_data(self) -> List[str]:
"""
:return: image codec as list of strings
"""
return super()._get_non_numeric_data_channel("image_codec")
def get_valid_image_codec_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan image codec as list of strings
"""
pass
# return super().get_valid_data_channel_values('image_codec')
class PressureSensor(SensorData):
"""
Pressure specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.PRESSURE,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_pressure_data(self) -> np.array:
"""
:return: pressure data as numpy array
"""
return super().get_data_channel("pressure")
def get_valid_pressure_data(self) -> np.array:
"""
:return: non-nan pressure data as numpy array
"""
return super().get_valid_data_channel_values("pressure")
class LightSensor(SensorData):
"""
Light specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.LIGHT,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_light_data(self) -> np.array:
"""
:return: light data as numpy array
"""
return super().get_data_channel("light")
def get_valid_light_data(self) -> np.array:
"""
:return: non-nan light data as numpy array
"""
return super().get_valid_data_channel_values("light")
class ProximitySensor(SensorData):
"""
Proximity specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.PROXIMITY,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_proximity_data(self) -> np.array:
"""
:return: proximity data as numpy array
"""
return super().get_data_channel("proximity")
def get_valid_proximity_data(self) -> np.array:
"""
:return: non-nan proximity data as numpy array
"""
return super().get_valid_data_channel_values("proximity")
class AmbientTemperatureSensor(SensorData):
"""
Ambient temperature specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.AMBIENT_TEMPERATURE,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_ambient_temperature_data(self) -> np.array:
"""
:return: ambient temperature data as numpy array
"""
return super().get_data_channel("ambient_temperature")
def get_valid_ambient_temperature_data(self) -> np.array:
"""
:return: non-nan ambient temperature data as numpy array
"""
return super().get_valid_data_channel_values("ambient_temperature")
class RelativeHumiditySensor(SensorData):
"""
Relative humidity specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.RELATIVE_HUMIDITY,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_relative_humidity_data(self) -> np.array:
"""
:return: relative humidity data as numpy array
"""
return super().get_data_channel("relative_humidity")
def get_valid_relative_humidity_data(self) -> np.array:
"""
:return: non-nan relative humidity data as numpy array
"""
return super().get_valid_data_channel_values("relative_humidity")
class AccelerometerSensor(SensorData):
"""
Accelerometer specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.ACCELEROMETER,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_accelerometer_x_data(self) -> np.array:
"""
:return: accelerometer x channel data as numpy array
"""
return super().get_data_channel("accelerometer_x")
def get_valid_accelerometer_x_data(self) -> np.array:
"""
:return: non-nan accelerometer x channel data as numpy array
"""
return super().get_valid_data_channel_values("accelerometer_x")
def get_accelerometer_y_data(self) -> np.array:
"""
:return: accelerometer y channel data as numpy array
"""
return super().get_data_channel("accelerometer_y")
def get_valid_accelerometer_y_data(self) -> np.array:
"""
:return: non-nan accelerometer y channel data as numpy array
"""
return super().get_valid_data_channel_values("accelerometer_y")
def get_accelerometer_z_data(self) -> np.array:
"""
:return: accelerometer z channel data as numpy array
"""
return super().get_data_channel("accelerometer_z")
def get_valid_accelerometer_z_data(self) -> np.array:
"""
:return: non-nan accelerometer z channel data as numpy array
"""
return super().get_valid_data_channel_values("accelerometer_z")
class MagnetometerSensor(SensorData):
"""
Magnetometer specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.MAGNETOMETER,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_magnetometer_x_data(self) -> np.array:
"""
:return: magnetometer x channel data as numpy array
"""
return super().get_data_channel("magnetometer_x")
def get_valid_magnetometer_x_data(self) -> np.array:
"""
:return: non-nan magnetometer x channel data as numpy array
"""
return super().get_valid_data_channel_values("magnetometer_x")
def get_magnetometer_y_data(self) -> np.array:
"""
:return: magnetometer y channel data as numpy array
"""
return super().get_data_channel("magnetometer_y")
def get_valid_magnetometer_y_data(self) -> np.array:
"""
:return: non-nan magnetometer y channel data as numpy array
"""
return super().get_valid_data_channel_values("magnetometer_y")
def get_magnetometer_z_data(self) -> np.array:
"""
:return: magnetometer z channel data as numpy array
"""
return super().get_data_channel("magnetometer_z")
def get_valid_magnetometer_z_data(self) -> np.array:
"""
:return: non-nan magnetometer z channel data as numpy array
"""
return super().get_valid_data_channel_values("magnetometer_z")
class LinearAccelerationSensor(SensorData):
"""
Linear acceleration specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.LINEAR_ACCELERATION,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_linear_acceleration_x_data(self) -> np.array:
"""
:return: linear acceleration x channel data as numpy array
"""
return super().get_data_channel("linear_acceleration_x")
def get_valid_linear_acceleration_x_data(self) -> np.array:
"""
:return: non-nan linear acceleration x channel data as numpy array
"""
return super().get_valid_data_channel_values("linear_acceleration_x")
def get_linear_acceleration_y_data(self) -> np.array:
"""
:return: linear acceleration y channel data as numpy array
"""
return super().get_data_channel("linear_acceleration_y")
def get_valid_linear_acceleration_y_data(self) -> np.array:
"""
:return: non-nan linear acceleration y channel data as numpy array
"""
return super().get_valid_data_channel_values("linear_acceleration_y")
def get_linear_acceleration_z_data(self) -> np.array:
"""
:return: linear acceleration z channel data as numpy array
"""
return super().get_data_channel("linear_acceleration_z")
def get_valid_linear_acceleration_z_data(self) -> np.array:
"""
:return: non-nan linear acceleration z channel data as numpy array
"""
return super().get_valid_data_channel_values("linear_acceleration_z")
class OrientationSensor(SensorData):
"""
Orientation specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.ORIENTATION,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_orientation_x_data(self) -> np.array:
"""
:return: orientation x channel data as numpy array
"""
return super().get_data_channel("orientation_x")
def get_valid_orientation_x_data(self) -> np.array:
"""
:return: non-nan orientation x channel data as numpy array
"""
return super().get_valid_data_channel_values("orientation_x")
def get_orientation_y_data(self) -> np.array:
"""
:return: orientation y channel data as numpy array
"""
return super().get_data_channel("orientation_y")
def get_valid_orientation_y_data(self) -> np.array:
"""
:return: non-nan orientation y channel data as numpy array
"""
return super().get_valid_data_channel_values("orientation_y")
def get_orientation_z_data(self) -> np.array:
"""
:return: orientation z channel data as numpy array
"""
return super().get_data_channel("orientation_z")
def get_valid_orientation_z_data(self) -> np.array:
"""
:return: non-nan orientation z channel data as numpy array
"""
return super().get_valid_data_channel_values("orientation_z")
class RotationVectorSensor(SensorData):
"""
Rotation vector specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.ROTATION_VECTOR,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_rotation_vector_x_data(self) -> np.array:
"""
:return: rotation vector x channel data as numpy array
"""
return super().get_data_channel("rotation_vector_x")
def get_valid_rotation_vector_x_data(self) -> np.array:
"""
:return: non-nan rotation vector x channel data as numpy array
"""
return super().get_valid_data_channel_values("rotation_vector_x")
def get_rotation_vector_y_data(self) -> np.array:
"""
:return: rotation vector y channel data as numpy array
"""
return super().get_data_channel("rotation_vector_y")
def get_valid_rotation_vector_y_data(self) -> np.array:
"""
:return: non-nan rotation vector y channel data as numpy array
"""
return super().get_valid_data_channel_values("rotation_vector_y")
def get_rotation_vector_z_data(self) -> np.array:
"""
:return: rotation vector z channel data as numpy array
"""
return super().get_data_channel("rotation_vector_z")
def get_valid_rotation_vector_z_data(self) -> np.array:
"""
:return: non-nan rotation vector z channel data as numpy array
"""
return super().get_valid_data_channel_values("rotation_vector_z")
class VelocitySensor(SensorData):
"""
Rotation vector specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.VELOCITY,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_velocity_x_data(self) -> np.array:
"""
:return: velocity x channel data as numpy array
"""
return super().get_data_channel("velocity_x")
def get_valid_velocity_x_data(self) -> np.array:
"""
:return: non-nan velocity x channel data as numpy array
"""
return super().get_valid_data_channel_values("velocity_x")
def get_velocity_y_data(self) -> np.array:
"""
:return: velocity y channel data as numpy array
"""
return super().get_data_channel("velocity_y")
def get_valid_velocity_y_data(self) -> np.array:
"""
:return: non-nan velocity y channel data as numpy array
"""
return super().get_valid_data_channel_values("velocity_y")
def get_velocity_z_data(self) -> np.array:
"""
:return: velocity z channel data as numpy array
"""
return super().get_data_channel("velocity_z")
def get_valid_velocity_z_data(self) -> np.array:
"""
:return: non-nan velocity z channel data as numpy array
"""
return super().get_valid_data_channel_values("velocity_z")
class GyroscopeSensor(SensorData):
"""
Gyroscope specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.GYROSCOPE,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_gyroscope_x_data(self) -> np.array:
"""
:return: gyroscope x channel data as numpy array
"""
return super().get_data_channel("gyroscope_x")
def get_valid_gyroscope_x_data(self) -> np.array:
"""
:return: non-nan gyroscope x channel data as numpy array
"""
return super().get_valid_data_channel_values("gyroscope_x")
def get_gyroscope_y_data(self) -> np.array:
"""
:return: gyroscope y channel data as numpy array
"""
return super().get_data_channel("gyroscope_y")
def get_valid_gyroscope_y_data(self) -> np.array:
"""
:return: non-nan gyroscope y channel data as numpy array
"""
return super().get_valid_data_channel_values("gyroscope_y")
def get_gyroscope_z_data(self) -> np.array:
"""
:return: gyroscope z channel data as numpy array
"""
return super().get_data_channel("gyroscope_z")
def get_valid_gyroscope_z_data(self) -> np.array:
"""
:return: non-nan gyroscope z channel data as numpy array
"""
return super().get_valid_data_channel_values("gyroscope_z")
class GravitySensor(SensorData):
"""
Gravity specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.GRAVITY,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_gravity_x_data(self) -> np.array:
"""
:return: gravity x channel data as numpy array
"""
return super().get_data_channel("gravity_x")
def get_valid_gravity_x_data(self) -> np.array:
"""
:return: non-nan gravity x channel data as numpy array
"""
return super().get_valid_data_channel_values("gravity_x")
def get_gravity_y_data(self) -> np.array:
"""
:return: gravity y channel data as numpy array
"""
return super().get_data_channel("gravity_y")
def get_valid_gravity_y_data(self) -> np.array:
"""
:return: non-nan gravity y channel data as numpy array
"""
return super().get_valid_data_channel_values("gravity_y")
def get_gravity_z_data(self) -> np.array:
"""
:return: gravity z channel data as numpy array
"""
return super().get_data_channel("gravity_z")
def get_valid_gravity_z_data(self) -> np.array:
"""
:return: non-nan gravity z channel data as numpy array
"""
return super().get_valid_data_channel_values("gravity_z")
class LocationSensor(SensorData):
"""
Location specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.LOCATION,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_gps_timestamps_data(self) -> np.array:
"""
:return: gps timestamps as numpy array
"""
return super().get_data_channel("gps_timestamps")
def get_valid_gps_timestamps_data(self) -> np.array:
"""
:return: non-nan gps timestamps as numpy array
"""
return super().get_valid_data_channel_values("gps_timestamps")
def get_latitude_data(self) -> np.array:
"""
:return: latitude data as numpy array
"""
return super().get_data_channel("latitude")
def get_valid_latitude_data(self) -> np.array:
"""
:return: non-nan latitude data as numpy array
"""
return super().get_valid_data_channel_values("latitude")
def get_longitude_data(self) -> np.array:
"""
:return: longitude data as numpy array
"""
return super().get_data_channel("longitude")
def get_valid_longitude_data(self) -> np.array:
"""
:return: non-nan longitude data as numpy array
"""
return super().get_valid_data_channel_values("longitude")
def get_altitude_data(self) -> np.array:
"""
:return: altitude data as numpy array
"""
return super().get_data_channel("altitude")
def get_valid_altitude_data(self) -> np.array:
"""
:return: non-nan altitude data as numpy array
"""
return super().get_valid_data_channel_values("altitude")
def get_speed_data(self) -> np.array:
"""
:return: speed data as numpy array
"""
return super().get_data_channel("speed")
def get_valid_speed_data(self) -> np.array:
"""
:return: non-nan speed data as numpy array
"""
return super().get_valid_data_channel_values("speed")
def get_bearing_data(self) -> np.array:
"""
:return: bearing data as numpy array
"""
return super().get_data_channel("bearing")
def get_valid_bearing_data(self) -> np.array:
"""
:return: non-nan bearing data as numpy array
"""
return super().get_valid_data_channel_values("bearing")
def get_horizontal_accuracy_data(self) -> np.array:
"""
:return: horizontal accuracy data as numpy array
"""
return super().get_data_channel("horizontal_accuracy")
def get_valid_horizontal_accuracy_data(self) -> np.array:
"""
:return: non-nan horizontal accuracy data as numpy array
"""
return super().get_valid_data_channel_values("horizontal_accuracy")
def get_vertical_accuracy_data(self) -> np.array:
"""
:return: vertical accuracy data as numpy array
"""
return super().get_data_channel("vertical_accuracy")
def get_valid_vertical_accuracy_data(self) -> np.array:
"""
:return: non-nan vertical accuracy data as numpy array
"""
return super().get_valid_data_channel_values("vertical_accuracy")
def get_speed_accuracy_data(self) -> np.array:
"""
:return: speed accuracy data as numpy array
"""
return super().get_data_channel("speed_accuracy")
def get_valid_speed_accuracy_data(self) -> np.array:
"""
:return: non-nan speed accuracy data as numpy array
"""
return super().get_valid_data_channel_values("speed_accuracy")
def get_bearing_accuracy_data(self) -> np.array:
"""
:return: bearing accuracy data as numpy array
"""
return super().get_data_channel("bearing_accuracy")
def get_valid_bearing_accuracy_data(self) -> np.array:
"""
:return: non-nan bearing accuracy data as numpy array
"""
return super().get_valid_data_channel_values("bearing_accuracy")
def get_location_provider_data(self) -> List[str]:
"""
:return: location provider data as list of strings
"""
return super()._get_non_numeric_data_channel("location_provider")
def get_valid_location_provider_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan location provider data as list of strings
"""
pass
# return super().get_valid_data_channel_values('location_provider')
class BestLocationSensor(SensorData):
"""
Best-location specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.BEST_LOCATION,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_gps_timestamps_data(self) -> np.array:
"""
:return: gps timestamps as numpy array
"""
return super().get_data_channel("gps_timestamps")
def get_valid_gps_timestamps_data(self) -> np.array:
"""
:return: non-nan gps timestamps as numpy array
"""
return super().get_valid_data_channel_values("gps_timestamps")
def get_latitude_data(self) -> np.array:
"""
:return: latitude data as numpy array
"""
return super().get_data_channel("latitude")
def get_valid_latitude_data(self) -> np.array:
"""
:return: non-nan latitude data as numpy array
"""
return super().get_valid_data_channel_values("latitude")
def get_longitude_data(self) -> np.array:
"""
:return: longitude data as numpy array
"""
return super().get_data_channel("longitude")
def get_valid_longitude_data(self) -> np.array:
"""
:return: non-nan longitude data as numpy array
"""
return super().get_valid_data_channel_values("longitude")
def get_altitude_data(self) -> np.array:
"""
:return: altitude data as numpy array
"""
return super().get_data_channel("altitude")
def get_valid_altitude_data(self) -> np.array:
"""
:return: non-nan altitude data as numpy array
"""
return super().get_valid_data_channel_values("altitude")
def get_speed_data(self) -> np.array:
"""
:return: speed data as numpy array
"""
return super().get_data_channel("speed")
def get_valid_speed_data(self) -> np.array:
"""
:return: non-nan speed data as numpy array
"""
return super().get_valid_data_channel_values("speed")
def get_bearing_data(self) -> np.array:
"""
:return: bearing data as numpy array
"""
return super().get_data_channel("bearing")
def get_valid_bearing_data(self) -> np.array:
"""
:return: non-nan bearing data as numpy array
"""
return super().get_valid_data_channel_values("bearing")
def get_horizontal_accuracy_data(self) -> np.array:
"""
:return: horizontal accuracy data as numpy array
"""
return super().get_data_channel("horizontal_accuracy")
def get_valid_horizontal_accuracy_data(self) -> np.array:
"""
:return: non-nan horizontal accuracy data as numpy array
"""
return super().get_valid_data_channel_values("horizontal_accuracy")
def get_vertical_accuracy_data(self) -> np.array:
"""
:return: vertical accuracy data as numpy array
"""
return super().get_data_channel("vertical_accuracy")
def get_valid_vertical_accuracy_data(self) -> np.array:
"""
:return: non-nan vertical accuracy data as numpy array
"""
return super().get_valid_data_channel_values("vertical_accuracy")
def get_speed_accuracy_data(self) -> np.array:
"""
:return: speed accuracy data as numpy array
"""
return super().get_data_channel("speed_accuracy")
def get_valid_speed_accuracy_data(self) -> np.array:
"""
:return: non-nan speed accuracy data as numpy array
"""
return super().get_valid_data_channel_values("speed_accuracy")
def get_bearing_accuracy_data(self) -> np.array:
"""
:return: bearing accuracy data as numpy array
"""
return super().get_data_channel("bearing_accuracy")
def get_valid_bearing_accuracy_data(self) -> np.array:
"""
:return: non-nan bearing accuracy data as numpy array
"""
return super().get_valid_data_channel_values("bearing_accuracy")
def get_location_provider_data(self) -> List[str]:
"""
:return: location provider data as list of strings
"""
return super()._get_non_numeric_data_channel("location_provider")
def get_valid_location_provider_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan location provider data as list of strings
"""
pass
# return super().get_valid_data_channel_values('location_provider')
class StationHealthSensor(SensorData):
"""
Station Health specific functions
"""
def __init__(
self,
sensor_name: str,
sensor_data: Optional[pa.Table] = None,
sample_rate_hz: float = np.nan,
sample_interval_s: float = np.nan,
sample_interval_std_s: float = np.nan,
is_sample_rate_fixed: bool = False,
are_timestamps_altered: bool = False,
calculate_stats: bool = False,
use_offset_model_for_correction: bool = False,
save_data: bool = False,
base_dir: str = ".",
gaps: Optional[List[Tuple[float, float]]] = None,
show_errors: bool = False,
):
super().__init__(
sensor_name,
sensor_data,
SensorType.STATION_HEALTH,
sample_rate_hz,
sample_interval_s,
sample_interval_std_s,
is_sample_rate_fixed,
are_timestamps_altered,
calculate_stats,
use_offset_model_for_correction,
save_data,
base_dir,
gaps,
show_errors,
)
def get_battery_charge_remaining_data(self) -> np.array:
"""
:return: battery charge remaining data as numpy array
"""
return super().get_data_channel("battery_charge_remaining")
def get_valid_battery_charge_remaining_data(self) -> np.array:
"""
:return: non-nan battery charge remaining data as numpy array
"""
return super().get_valid_data_channel_values("battery_charge_remaining")
def get_battery_current_strength_data(self) -> np.array:
"""
:return: battery current strength data as numpy array
"""
return super().get_data_channel("battery_current_strength")
def get_valid_battery_current_strength_data(self) -> np.array:
"""
:return: non-nan battery current strength data as numpy array
"""
return super().get_valid_data_channel_values("battery_current_strength")
def get_internal_temp_c_data(self) -> np.array:
"""
:return: internal temperature celsius data as numpy array
"""
return super().get_data_channel("internal_temp_c")
def get_valid_internal_temp_c_data(self) -> np.array:
"""
:return: non-nan internal temperature celsius data as numpy array
"""
return super().get_valid_data_channel_values("internal_temp_c")
def get_network_type_data(self) -> List[str]:
"""
:return: network type data as list of strings
"""
return super()._get_non_numeric_data_channel("network_type")
def get_valid_network_type_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan network type data as list of strings
"""
pass
# return super().get_valid_data_channel_values('network_type')
def get_network_strength_data(self) -> np.array:
"""
:return: network strength data as numpy array
"""
return super().get_data_channel("network_strength")
def get_valid_network_strength_data(self) -> np.array:
"""
:return: non-nan network strength data as numpy array
"""
return super().get_valid_data_channel_values("network_strength")
def get_power_state_data(self) -> List[str]:
"""
:return: power state data as list of strings
"""
return super()._get_non_numeric_data_channel("power_state")
def get_valid_power_state_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan power state data as list of strings
"""
pass
# return super().get_valid_data_channel_values('power_state')
def get_avail_ram_data(self) -> np.array:
"""
:return: available RAM data as numpy array
"""
return super().get_data_channel("avail_ram")
def get_valid_avail_ram_data(self) -> np.array:
"""
:return: non-nan available RAM data as numpy array
"""
return super().get_valid_data_channel_values("avail_ram")
def get_avail_disk_data(self) -> np.array:
"""
:return: available disk space data as numpy array
"""
return super().get_data_channel("avail_disk")
def get_valid_avail_disk_data(self) -> np.array:
"""
:return: non-nan available disk space data as numpy array
"""
return super().get_valid_data_channel_values("avail_disk")
def get_cell_service_data(self) -> List[str]:
"""
:return: cell service data as list of strings
"""
return super()._get_non_numeric_data_channel("cell_service")
def get_valid_cell_service_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan cell service data as list of strings
"""
pass
# return super().get_valid_data_channel_values('cell_service')
def get_cpu_utilization_data(self) -> np.array:
"""
:return: CPU utilization data as numpy array
"""
return super().get_data_channel("cpu_utilization")
def get_valid_cpu_utilization_data(self) -> np.array:
"""
:return: non-nan CPU utilization data as numpy array
"""
return super().get_valid_data_channel_values("cpu_utilization")
def get_wifi_wake_lock_data(self) -> List[str]:
"""
:return: Wi-Fi wake lock data as list of strings
"""
return super()._get_non_numeric_data_channel("wifi_wake_lock")
def get_valid_wifi_wake_lock_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan Wi-Fi wake lock data as list of strings
"""
pass
# return super().get_valid_data_channel_values('wifi_wake_lock')
def get_screen_state_data(self) -> List[str]:
"""
:return: screen state data as list of strings
"""
return super()._get_non_numeric_data_channel("screen_state")
def get_valid_screen_state_data(self) -> List[str]:
"""
NOT IMPLEMENTED
:return: non-nan screen state data as list of strings
"""
pass
# return super().get_valid_data_channel_values('screen_state')
def get_screen_brightness_data(self) -> np.array:
"""
:return: screen brightness data as numpy array
"""
return super().get_data_channel("screen_brightness")
def get_valid_screen_brightness_data(self) -> np.array:
"""
:return: non-nan screen brightness data as numpy array
"""
return super().get_valid_data_channel_values("screen_brightness")
Classes
class AccelerometerSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Accelerometer specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class AccelerometerSensor(SensorData): """ Accelerometer specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.ACCELEROMETER, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_accelerometer_x_data(self) -> np.array: """ :return: accelerometer x channel data as numpy array """ return super().get_data_channel("accelerometer_x") def get_valid_accelerometer_x_data(self) -> np.array: """ :return: non-nan accelerometer x channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_x") def get_accelerometer_y_data(self) -> np.array: """ :return: accelerometer y channel data as numpy array """ return super().get_data_channel("accelerometer_y") def get_valid_accelerometer_y_data(self) -> np.array: """ :return: non-nan accelerometer y channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_y") def get_accelerometer_z_data(self) -> np.array: """ :return: accelerometer z channel data as numpy array """ return super().get_data_channel("accelerometer_z") def get_valid_accelerometer_z_data(self) -> np.array: """ :return: non-nan accelerometer z channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_z")
Ancestors
Methods
def get_accelerometer_x_data(self) ‑>
-
:return: accelerometer x channel data as numpy array
Expand source code
def get_accelerometer_x_data(self) -> np.array: """ :return: accelerometer x channel data as numpy array """ return super().get_data_channel("accelerometer_x")
def get_accelerometer_y_data(self) ‑>
-
:return: accelerometer y channel data as numpy array
Expand source code
def get_accelerometer_y_data(self) -> np.array: """ :return: accelerometer y channel data as numpy array """ return super().get_data_channel("accelerometer_y")
def get_accelerometer_z_data(self) ‑>
-
:return: accelerometer z channel data as numpy array
Expand source code
def get_accelerometer_z_data(self) -> np.array: """ :return: accelerometer z channel data as numpy array """ return super().get_data_channel("accelerometer_z")
def get_valid_accelerometer_x_data(self) ‑>
-
:return: non-nan accelerometer x channel data as numpy array
Expand source code
def get_valid_accelerometer_x_data(self) -> np.array: """ :return: non-nan accelerometer x channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_x")
def get_valid_accelerometer_y_data(self) ‑>
-
:return: non-nan accelerometer y channel data as numpy array
Expand source code
def get_valid_accelerometer_y_data(self) -> np.array: """ :return: non-nan accelerometer y channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_y")
def get_valid_accelerometer_z_data(self) ‑>
-
:return: non-nan accelerometer z channel data as numpy array
Expand source code
def get_valid_accelerometer_z_data(self) -> np.array: """ :return: non-nan accelerometer z channel data as numpy array """ return super().get_valid_data_channel_values("accelerometer_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class AmbientTemperatureSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Ambient temperature specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class AmbientTemperatureSensor(SensorData): """ Ambient temperature specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.AMBIENT_TEMPERATURE, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_ambient_temperature_data(self) -> np.array: """ :return: ambient temperature data as numpy array """ return super().get_data_channel("ambient_temperature") def get_valid_ambient_temperature_data(self) -> np.array: """ :return: non-nan ambient temperature data as numpy array """ return super().get_valid_data_channel_values("ambient_temperature")
Ancestors
Methods
def get_ambient_temperature_data(self) ‑>
-
:return: ambient temperature data as numpy array
Expand source code
def get_ambient_temperature_data(self) -> np.array: """ :return: ambient temperature data as numpy array """ return super().get_data_channel("ambient_temperature")
def get_valid_ambient_temperature_data(self) ‑>
-
:return: non-nan ambient temperature data as numpy array
Expand source code
def get_valid_ambient_temperature_data(self) -> np.array: """ :return: non-nan ambient temperature data as numpy array """ return super().get_valid_data_channel_values("ambient_temperature")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class AudioSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, use_temp_dir: bool = False)
-
Audio specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class AudioSensor(SensorData): """ Audio specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, use_temp_dir: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.AUDIO, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, use_temp_dir, ) @staticmethod def from_metadata( sensor_name: str, data: AudioWithGaps, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", use_temp_dir: bool = False, ) -> "SensorData": """ init but using metadata :param sensor_name: name of the sensor :param data: the metadata used to create the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object """ return SensorData( sensor_name, data.create_timestamps(), SensorType.AUDIO, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, use_temp_dir=use_temp_dir, ) def get_microphone_data(self) -> np.array: """ :return: audio data as numpy array """ return super().get_data_channel("microphone") def get_valid_microphone_data(self) -> np.array: """ :return: non-nan audio data as numpy array """ return super().get_valid_data_channel_values("microphone")
Ancestors
Static methods
def from_metadata(sensor_name: str, data: AudioWithGaps, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', use_temp_dir: bool = False) ‑> SensorData
-
init but using metadata
:param sensor_name: name of the sensor :param data: the metadata used to create the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object
Expand source code
@staticmethod def from_metadata( sensor_name: str, data: AudioWithGaps, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", use_temp_dir: bool = False, ) -> "SensorData": """ init but using metadata :param sensor_name: name of the sensor :param data: the metadata used to create the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object """ return SensorData( sensor_name, data.create_timestamps(), SensorType.AUDIO, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, use_temp_dir=use_temp_dir, )
Methods
def get_microphone_data(self) ‑>
-
:return: audio data as numpy array
Expand source code
def get_microphone_data(self) -> np.array: """ :return: audio data as numpy array """ return super().get_data_channel("microphone")
def get_valid_microphone_data(self) ‑>
-
:return: non-nan audio data as numpy array
Expand source code
def get_valid_microphone_data(self) -> np.array: """ :return: non-nan audio data as numpy array """ return super().get_valid_data_channel_values("microphone")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class BestLocationSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Best-location specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class BestLocationSensor(SensorData): """ Best-location specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.BEST_LOCATION, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_gps_timestamps_data(self) -> np.array: """ :return: gps timestamps as numpy array """ return super().get_data_channel("gps_timestamps") def get_valid_gps_timestamps_data(self) -> np.array: """ :return: non-nan gps timestamps as numpy array """ return super().get_valid_data_channel_values("gps_timestamps") def get_latitude_data(self) -> np.array: """ :return: latitude data as numpy array """ return super().get_data_channel("latitude") def get_valid_latitude_data(self) -> np.array: """ :return: non-nan latitude data as numpy array """ return super().get_valid_data_channel_values("latitude") def get_longitude_data(self) -> np.array: """ :return: longitude data as numpy array """ return super().get_data_channel("longitude") def get_valid_longitude_data(self) -> np.array: """ :return: non-nan longitude data as numpy array """ return super().get_valid_data_channel_values("longitude") def get_altitude_data(self) -> np.array: """ :return: altitude data as numpy array """ return super().get_data_channel("altitude") def get_valid_altitude_data(self) -> np.array: """ :return: non-nan altitude data as numpy array """ return super().get_valid_data_channel_values("altitude") def get_speed_data(self) -> np.array: """ :return: speed data as numpy array """ return super().get_data_channel("speed") def get_valid_speed_data(self) -> np.array: """ :return: non-nan speed data as numpy array """ return super().get_valid_data_channel_values("speed") def get_bearing_data(self) -> np.array: """ :return: bearing data as numpy array """ return super().get_data_channel("bearing") def get_valid_bearing_data(self) -> np.array: """ :return: non-nan bearing data as numpy array """ return super().get_valid_data_channel_values("bearing") def get_horizontal_accuracy_data(self) -> np.array: """ :return: horizontal accuracy data as numpy array """ return super().get_data_channel("horizontal_accuracy") def get_valid_horizontal_accuracy_data(self) -> np.array: """ :return: non-nan horizontal accuracy data as numpy array """ return super().get_valid_data_channel_values("horizontal_accuracy") def get_vertical_accuracy_data(self) -> np.array: """ :return: vertical accuracy data as numpy array """ return super().get_data_channel("vertical_accuracy") def get_valid_vertical_accuracy_data(self) -> np.array: """ :return: non-nan vertical accuracy data as numpy array """ return super().get_valid_data_channel_values("vertical_accuracy") def get_speed_accuracy_data(self) -> np.array: """ :return: speed accuracy data as numpy array """ return super().get_data_channel("speed_accuracy") def get_valid_speed_accuracy_data(self) -> np.array: """ :return: non-nan speed accuracy data as numpy array """ return super().get_valid_data_channel_values("speed_accuracy") def get_bearing_accuracy_data(self) -> np.array: """ :return: bearing accuracy data as numpy array """ return super().get_data_channel("bearing_accuracy") def get_valid_bearing_accuracy_data(self) -> np.array: """ :return: non-nan bearing accuracy data as numpy array """ return super().get_valid_data_channel_values("bearing_accuracy") def get_location_provider_data(self) -> List[str]: """ :return: location provider data as list of strings """ return super()._get_non_numeric_data_channel("location_provider") def get_valid_location_provider_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan location provider data as list of strings """ pass # return super().get_valid_data_channel_values('location_provider')
Ancestors
Methods
def get_altitude_data(self) ‑>
-
:return: altitude data as numpy array
Expand source code
def get_altitude_data(self) -> np.array: """ :return: altitude data as numpy array """ return super().get_data_channel("altitude")
def get_bearing_accuracy_data(self) ‑>
-
:return: bearing accuracy data as numpy array
Expand source code
def get_bearing_accuracy_data(self) -> np.array: """ :return: bearing accuracy data as numpy array """ return super().get_data_channel("bearing_accuracy")
def get_bearing_data(self) ‑>
-
:return: bearing data as numpy array
Expand source code
def get_bearing_data(self) -> np.array: """ :return: bearing data as numpy array """ return super().get_data_channel("bearing")
def get_gps_timestamps_data(self) ‑>
-
:return: gps timestamps as numpy array
Expand source code
def get_gps_timestamps_data(self) -> np.array: """ :return: gps timestamps as numpy array """ return super().get_data_channel("gps_timestamps")
def get_horizontal_accuracy_data(self) ‑>
-
:return: horizontal accuracy data as numpy array
Expand source code
def get_horizontal_accuracy_data(self) -> np.array: """ :return: horizontal accuracy data as numpy array """ return super().get_data_channel("horizontal_accuracy")
def get_latitude_data(self) ‑>
-
:return: latitude data as numpy array
Expand source code
def get_latitude_data(self) -> np.array: """ :return: latitude data as numpy array """ return super().get_data_channel("latitude")
def get_location_provider_data(self) ‑> List[str]
-
:return: location provider data as list of strings
Expand source code
def get_location_provider_data(self) -> List[str]: """ :return: location provider data as list of strings """ return super()._get_non_numeric_data_channel("location_provider")
def get_longitude_data(self) ‑>
-
:return: longitude data as numpy array
Expand source code
def get_longitude_data(self) -> np.array: """ :return: longitude data as numpy array """ return super().get_data_channel("longitude")
def get_speed_accuracy_data(self) ‑>
-
:return: speed accuracy data as numpy array
Expand source code
def get_speed_accuracy_data(self) -> np.array: """ :return: speed accuracy data as numpy array """ return super().get_data_channel("speed_accuracy")
def get_speed_data(self) ‑>
-
:return: speed data as numpy array
Expand source code
def get_speed_data(self) -> np.array: """ :return: speed data as numpy array """ return super().get_data_channel("speed")
def get_valid_altitude_data(self) ‑>
-
:return: non-nan altitude data as numpy array
Expand source code
def get_valid_altitude_data(self) -> np.array: """ :return: non-nan altitude data as numpy array """ return super().get_valid_data_channel_values("altitude")
def get_valid_bearing_accuracy_data(self) ‑>
-
:return: non-nan bearing accuracy data as numpy array
Expand source code
def get_valid_bearing_accuracy_data(self) -> np.array: """ :return: non-nan bearing accuracy data as numpy array """ return super().get_valid_data_channel_values("bearing_accuracy")
def get_valid_bearing_data(self) ‑>
-
:return: non-nan bearing data as numpy array
Expand source code
def get_valid_bearing_data(self) -> np.array: """ :return: non-nan bearing data as numpy array """ return super().get_valid_data_channel_values("bearing")
def get_valid_gps_timestamps_data(self) ‑>
-
:return: non-nan gps timestamps as numpy array
Expand source code
def get_valid_gps_timestamps_data(self) -> np.array: """ :return: non-nan gps timestamps as numpy array """ return super().get_valid_data_channel_values("gps_timestamps")
def get_valid_horizontal_accuracy_data(self) ‑>
-
:return: non-nan horizontal accuracy data as numpy array
Expand source code
def get_valid_horizontal_accuracy_data(self) -> np.array: """ :return: non-nan horizontal accuracy data as numpy array """ return super().get_valid_data_channel_values("horizontal_accuracy")
def get_valid_latitude_data(self) ‑>
-
:return: non-nan latitude data as numpy array
Expand source code
def get_valid_latitude_data(self) -> np.array: """ :return: non-nan latitude data as numpy array """ return super().get_valid_data_channel_values("latitude")
def get_valid_location_provider_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan location provider data as list of strings
Expand source code
def get_valid_location_provider_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan location provider data as list of strings """ pass # return super().get_valid_data_channel_values('location_provider')
def get_valid_longitude_data(self) ‑>
-
:return: non-nan longitude data as numpy array
Expand source code
def get_valid_longitude_data(self) -> np.array: """ :return: non-nan longitude data as numpy array """ return super().get_valid_data_channel_values("longitude")
def get_valid_speed_accuracy_data(self) ‑>
-
:return: non-nan speed accuracy data as numpy array
Expand source code
def get_valid_speed_accuracy_data(self) -> np.array: """ :return: non-nan speed accuracy data as numpy array """ return super().get_valid_data_channel_values("speed_accuracy")
def get_valid_speed_data(self) ‑>
-
:return: non-nan speed data as numpy array
Expand source code
def get_valid_speed_data(self) -> np.array: """ :return: non-nan speed data as numpy array """ return super().get_valid_data_channel_values("speed")
def get_valid_vertical_accuracy_data(self) ‑>
-
:return: non-nan vertical accuracy data as numpy array
Expand source code
def get_valid_vertical_accuracy_data(self) -> np.array: """ :return: non-nan vertical accuracy data as numpy array """ return super().get_valid_data_channel_values("vertical_accuracy")
def get_vertical_accuracy_data(self) ‑>
-
:return: vertical accuracy data as numpy array
Expand source code
def get_vertical_accuracy_data(self) -> np.array: """ :return: vertical accuracy data as numpy array """ return super().get_data_channel("vertical_accuracy")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class CompressedAudioSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Compressed audio specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class CompressedAudioSensor(SensorData): """ Compressed audio specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.COMPRESSED_AUDIO, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_compressed_audio_data(self) -> np.array: """ :return: compressed audio data as numpy array """ return super().get_data_channel("compressed_audio") def get_valid_compressed_audio_data(self) -> np.array: """ :return: non-nan compressed audio data as numpy array """ return super().get_valid_data_channel_values("compressed_audio") def get_audio_codec_data(self) -> List[str]: """ :return: audio codec as list of strings """ return super()._get_non_numeric_data_channel("audio_codec") def _get_valid_audio_codec_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan audio codec as list of strings """ pass # return super().get_valid_data_channel_values('audio_codec')
Ancestors
Methods
def get_audio_codec_data(self) ‑> List[str]
-
:return: audio codec as list of strings
Expand source code
def get_audio_codec_data(self) -> List[str]: """ :return: audio codec as list of strings """ return super()._get_non_numeric_data_channel("audio_codec")
def get_compressed_audio_data(self) ‑>
-
:return: compressed audio data as numpy array
Expand source code
def get_compressed_audio_data(self) -> np.array: """ :return: compressed audio data as numpy array """ return super().get_data_channel("compressed_audio")
def get_valid_compressed_audio_data(self) ‑>
-
:return: non-nan compressed audio data as numpy array
Expand source code
def get_valid_compressed_audio_data(self) -> np.array: """ :return: non-nan compressed audio data as numpy array """ return super().get_valid_data_channel_values("compressed_audio")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class GravitySensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Gravity specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class GravitySensor(SensorData): """ Gravity specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.GRAVITY, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_gravity_x_data(self) -> np.array: """ :return: gravity x channel data as numpy array """ return super().get_data_channel("gravity_x") def get_valid_gravity_x_data(self) -> np.array: """ :return: non-nan gravity x channel data as numpy array """ return super().get_valid_data_channel_values("gravity_x") def get_gravity_y_data(self) -> np.array: """ :return: gravity y channel data as numpy array """ return super().get_data_channel("gravity_y") def get_valid_gravity_y_data(self) -> np.array: """ :return: non-nan gravity y channel data as numpy array """ return super().get_valid_data_channel_values("gravity_y") def get_gravity_z_data(self) -> np.array: """ :return: gravity z channel data as numpy array """ return super().get_data_channel("gravity_z") def get_valid_gravity_z_data(self) -> np.array: """ :return: non-nan gravity z channel data as numpy array """ return super().get_valid_data_channel_values("gravity_z")
Ancestors
Methods
def get_gravity_x_data(self) ‑>
-
:return: gravity x channel data as numpy array
Expand source code
def get_gravity_x_data(self) -> np.array: """ :return: gravity x channel data as numpy array """ return super().get_data_channel("gravity_x")
def get_gravity_y_data(self) ‑>
-
:return: gravity y channel data as numpy array
Expand source code
def get_gravity_y_data(self) -> np.array: """ :return: gravity y channel data as numpy array """ return super().get_data_channel("gravity_y")
def get_gravity_z_data(self) ‑>
-
:return: gravity z channel data as numpy array
Expand source code
def get_gravity_z_data(self) -> np.array: """ :return: gravity z channel data as numpy array """ return super().get_data_channel("gravity_z")
def get_valid_gravity_x_data(self) ‑>
-
:return: non-nan gravity x channel data as numpy array
Expand source code
def get_valid_gravity_x_data(self) -> np.array: """ :return: non-nan gravity x channel data as numpy array """ return super().get_valid_data_channel_values("gravity_x")
def get_valid_gravity_y_data(self) ‑>
-
:return: non-nan gravity y channel data as numpy array
Expand source code
def get_valid_gravity_y_data(self) -> np.array: """ :return: non-nan gravity y channel data as numpy array """ return super().get_valid_data_channel_values("gravity_y")
def get_valid_gravity_z_data(self) ‑>
-
:return: non-nan gravity z channel data as numpy array
Expand source code
def get_valid_gravity_z_data(self) -> np.array: """ :return: non-nan gravity z channel data as numpy array """ return super().get_valid_data_channel_values("gravity_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class GyroscopeSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Gyroscope specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class GyroscopeSensor(SensorData): """ Gyroscope specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.GYROSCOPE, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_gyroscope_x_data(self) -> np.array: """ :return: gyroscope x channel data as numpy array """ return super().get_data_channel("gyroscope_x") def get_valid_gyroscope_x_data(self) -> np.array: """ :return: non-nan gyroscope x channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_x") def get_gyroscope_y_data(self) -> np.array: """ :return: gyroscope y channel data as numpy array """ return super().get_data_channel("gyroscope_y") def get_valid_gyroscope_y_data(self) -> np.array: """ :return: non-nan gyroscope y channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_y") def get_gyroscope_z_data(self) -> np.array: """ :return: gyroscope z channel data as numpy array """ return super().get_data_channel("gyroscope_z") def get_valid_gyroscope_z_data(self) -> np.array: """ :return: non-nan gyroscope z channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_z")
Ancestors
Methods
def get_gyroscope_x_data(self) ‑>
-
:return: gyroscope x channel data as numpy array
Expand source code
def get_gyroscope_x_data(self) -> np.array: """ :return: gyroscope x channel data as numpy array """ return super().get_data_channel("gyroscope_x")
def get_gyroscope_y_data(self) ‑>
-
:return: gyroscope y channel data as numpy array
Expand source code
def get_gyroscope_y_data(self) -> np.array: """ :return: gyroscope y channel data as numpy array """ return super().get_data_channel("gyroscope_y")
def get_gyroscope_z_data(self) ‑>
-
:return: gyroscope z channel data as numpy array
Expand source code
def get_gyroscope_z_data(self) -> np.array: """ :return: gyroscope z channel data as numpy array """ return super().get_data_channel("gyroscope_z")
def get_valid_gyroscope_x_data(self) ‑>
-
:return: non-nan gyroscope x channel data as numpy array
Expand source code
def get_valid_gyroscope_x_data(self) -> np.array: """ :return: non-nan gyroscope x channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_x")
def get_valid_gyroscope_y_data(self) ‑>
-
:return: non-nan gyroscope y channel data as numpy array
Expand source code
def get_valid_gyroscope_y_data(self) -> np.array: """ :return: non-nan gyroscope y channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_y")
def get_valid_gyroscope_z_data(self) ‑>
-
:return: non-nan gyroscope z channel data as numpy array
Expand source code
def get_valid_gyroscope_z_data(self) -> np.array: """ :return: non-nan gyroscope z channel data as numpy array """ return super().get_valid_data_channel_values("gyroscope_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class ImageSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Image specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class ImageSensor(SensorData): """ Image specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.IMAGE, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_image_data(self) -> np.array: """ :return: image data as numpy array """ return super().get_data_channel("image") def get_valid_image_data(self) -> np.array: """ :return: non-nan image data as numpy array """ return super().get_valid_data_channel_values("image") def get_image_codec_data(self) -> List[str]: """ :return: image codec as list of strings """ return super()._get_non_numeric_data_channel("image_codec") def get_valid_image_codec_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan image codec as list of strings """ pass # return super().get_valid_data_channel_values('image_codec')
Ancestors
Methods
def get_image_codec_data(self) ‑> List[str]
-
:return: image codec as list of strings
Expand source code
def get_image_codec_data(self) -> List[str]: """ :return: image codec as list of strings """ return super()._get_non_numeric_data_channel("image_codec")
def get_image_data(self) ‑>
-
:return: image data as numpy array
Expand source code
def get_image_data(self) -> np.array: """ :return: image data as numpy array """ return super().get_data_channel("image")
def get_valid_image_codec_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan image codec as list of strings
Expand source code
def get_valid_image_codec_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan image codec as list of strings """ pass # return super().get_valid_data_channel_values('image_codec')
def get_valid_image_data(self) ‑>
-
:return: non-nan image data as numpy array
Expand source code
def get_valid_image_data(self) -> np.array: """ :return: non-nan image data as numpy array """ return super().get_valid_data_channel_values("image")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class LightSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Light specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class LightSensor(SensorData): """ Light specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.LIGHT, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_light_data(self) -> np.array: """ :return: light data as numpy array """ return super().get_data_channel("light") def get_valid_light_data(self) -> np.array: """ :return: non-nan light data as numpy array """ return super().get_valid_data_channel_values("light")
Ancestors
Methods
def get_light_data(self) ‑>
-
:return: light data as numpy array
Expand source code
def get_light_data(self) -> np.array: """ :return: light data as numpy array """ return super().get_data_channel("light")
def get_valid_light_data(self) ‑>
-
:return: non-nan light data as numpy array
Expand source code
def get_valid_light_data(self) -> np.array: """ :return: non-nan light data as numpy array """ return super().get_valid_data_channel_values("light")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class LinearAccelerationSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Linear acceleration specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class LinearAccelerationSensor(SensorData): """ Linear acceleration specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.LINEAR_ACCELERATION, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_linear_acceleration_x_data(self) -> np.array: """ :return: linear acceleration x channel data as numpy array """ return super().get_data_channel("linear_acceleration_x") def get_valid_linear_acceleration_x_data(self) -> np.array: """ :return: non-nan linear acceleration x channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_x") def get_linear_acceleration_y_data(self) -> np.array: """ :return: linear acceleration y channel data as numpy array """ return super().get_data_channel("linear_acceleration_y") def get_valid_linear_acceleration_y_data(self) -> np.array: """ :return: non-nan linear acceleration y channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_y") def get_linear_acceleration_z_data(self) -> np.array: """ :return: linear acceleration z channel data as numpy array """ return super().get_data_channel("linear_acceleration_z") def get_valid_linear_acceleration_z_data(self) -> np.array: """ :return: non-nan linear acceleration z channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_z")
Ancestors
Methods
def get_linear_acceleration_x_data(self) ‑>
-
:return: linear acceleration x channel data as numpy array
Expand source code
def get_linear_acceleration_x_data(self) -> np.array: """ :return: linear acceleration x channel data as numpy array """ return super().get_data_channel("linear_acceleration_x")
def get_linear_acceleration_y_data(self) ‑>
-
:return: linear acceleration y channel data as numpy array
Expand source code
def get_linear_acceleration_y_data(self) -> np.array: """ :return: linear acceleration y channel data as numpy array """ return super().get_data_channel("linear_acceleration_y")
def get_linear_acceleration_z_data(self) ‑>
-
:return: linear acceleration z channel data as numpy array
Expand source code
def get_linear_acceleration_z_data(self) -> np.array: """ :return: linear acceleration z channel data as numpy array """ return super().get_data_channel("linear_acceleration_z")
def get_valid_linear_acceleration_x_data(self) ‑>
-
:return: non-nan linear acceleration x channel data as numpy array
Expand source code
def get_valid_linear_acceleration_x_data(self) -> np.array: """ :return: non-nan linear acceleration x channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_x")
def get_valid_linear_acceleration_y_data(self) ‑>
-
:return: non-nan linear acceleration y channel data as numpy array
Expand source code
def get_valid_linear_acceleration_y_data(self) -> np.array: """ :return: non-nan linear acceleration y channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_y")
def get_valid_linear_acceleration_z_data(self) ‑>
-
:return: non-nan linear acceleration z channel data as numpy array
Expand source code
def get_valid_linear_acceleration_z_data(self) -> np.array: """ :return: non-nan linear acceleration z channel data as numpy array """ return super().get_valid_data_channel_values("linear_acceleration_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class LocationSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Location specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class LocationSensor(SensorData): """ Location specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.LOCATION, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_gps_timestamps_data(self) -> np.array: """ :return: gps timestamps as numpy array """ return super().get_data_channel("gps_timestamps") def get_valid_gps_timestamps_data(self) -> np.array: """ :return: non-nan gps timestamps as numpy array """ return super().get_valid_data_channel_values("gps_timestamps") def get_latitude_data(self) -> np.array: """ :return: latitude data as numpy array """ return super().get_data_channel("latitude") def get_valid_latitude_data(self) -> np.array: """ :return: non-nan latitude data as numpy array """ return super().get_valid_data_channel_values("latitude") def get_longitude_data(self) -> np.array: """ :return: longitude data as numpy array """ return super().get_data_channel("longitude") def get_valid_longitude_data(self) -> np.array: """ :return: non-nan longitude data as numpy array """ return super().get_valid_data_channel_values("longitude") def get_altitude_data(self) -> np.array: """ :return: altitude data as numpy array """ return super().get_data_channel("altitude") def get_valid_altitude_data(self) -> np.array: """ :return: non-nan altitude data as numpy array """ return super().get_valid_data_channel_values("altitude") def get_speed_data(self) -> np.array: """ :return: speed data as numpy array """ return super().get_data_channel("speed") def get_valid_speed_data(self) -> np.array: """ :return: non-nan speed data as numpy array """ return super().get_valid_data_channel_values("speed") def get_bearing_data(self) -> np.array: """ :return: bearing data as numpy array """ return super().get_data_channel("bearing") def get_valid_bearing_data(self) -> np.array: """ :return: non-nan bearing data as numpy array """ return super().get_valid_data_channel_values("bearing") def get_horizontal_accuracy_data(self) -> np.array: """ :return: horizontal accuracy data as numpy array """ return super().get_data_channel("horizontal_accuracy") def get_valid_horizontal_accuracy_data(self) -> np.array: """ :return: non-nan horizontal accuracy data as numpy array """ return super().get_valid_data_channel_values("horizontal_accuracy") def get_vertical_accuracy_data(self) -> np.array: """ :return: vertical accuracy data as numpy array """ return super().get_data_channel("vertical_accuracy") def get_valid_vertical_accuracy_data(self) -> np.array: """ :return: non-nan vertical accuracy data as numpy array """ return super().get_valid_data_channel_values("vertical_accuracy") def get_speed_accuracy_data(self) -> np.array: """ :return: speed accuracy data as numpy array """ return super().get_data_channel("speed_accuracy") def get_valid_speed_accuracy_data(self) -> np.array: """ :return: non-nan speed accuracy data as numpy array """ return super().get_valid_data_channel_values("speed_accuracy") def get_bearing_accuracy_data(self) -> np.array: """ :return: bearing accuracy data as numpy array """ return super().get_data_channel("bearing_accuracy") def get_valid_bearing_accuracy_data(self) -> np.array: """ :return: non-nan bearing accuracy data as numpy array """ return super().get_valid_data_channel_values("bearing_accuracy") def get_location_provider_data(self) -> List[str]: """ :return: location provider data as list of strings """ return super()._get_non_numeric_data_channel("location_provider") def get_valid_location_provider_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan location provider data as list of strings """ pass # return super().get_valid_data_channel_values('location_provider')
Ancestors
Methods
def get_altitude_data(self) ‑>
-
:return: altitude data as numpy array
Expand source code
def get_altitude_data(self) -> np.array: """ :return: altitude data as numpy array """ return super().get_data_channel("altitude")
def get_bearing_accuracy_data(self) ‑>
-
:return: bearing accuracy data as numpy array
Expand source code
def get_bearing_accuracy_data(self) -> np.array: """ :return: bearing accuracy data as numpy array """ return super().get_data_channel("bearing_accuracy")
def get_bearing_data(self) ‑>
-
:return: bearing data as numpy array
Expand source code
def get_bearing_data(self) -> np.array: """ :return: bearing data as numpy array """ return super().get_data_channel("bearing")
def get_gps_timestamps_data(self) ‑>
-
:return: gps timestamps as numpy array
Expand source code
def get_gps_timestamps_data(self) -> np.array: """ :return: gps timestamps as numpy array """ return super().get_data_channel("gps_timestamps")
def get_horizontal_accuracy_data(self) ‑>
-
:return: horizontal accuracy data as numpy array
Expand source code
def get_horizontal_accuracy_data(self) -> np.array: """ :return: horizontal accuracy data as numpy array """ return super().get_data_channel("horizontal_accuracy")
def get_latitude_data(self) ‑>
-
:return: latitude data as numpy array
Expand source code
def get_latitude_data(self) -> np.array: """ :return: latitude data as numpy array """ return super().get_data_channel("latitude")
def get_location_provider_data(self) ‑> List[str]
-
:return: location provider data as list of strings
Expand source code
def get_location_provider_data(self) -> List[str]: """ :return: location provider data as list of strings """ return super()._get_non_numeric_data_channel("location_provider")
def get_longitude_data(self) ‑>
-
:return: longitude data as numpy array
Expand source code
def get_longitude_data(self) -> np.array: """ :return: longitude data as numpy array """ return super().get_data_channel("longitude")
def get_speed_accuracy_data(self) ‑>
-
:return: speed accuracy data as numpy array
Expand source code
def get_speed_accuracy_data(self) -> np.array: """ :return: speed accuracy data as numpy array """ return super().get_data_channel("speed_accuracy")
def get_speed_data(self) ‑>
-
:return: speed data as numpy array
Expand source code
def get_speed_data(self) -> np.array: """ :return: speed data as numpy array """ return super().get_data_channel("speed")
def get_valid_altitude_data(self) ‑>
-
:return: non-nan altitude data as numpy array
Expand source code
def get_valid_altitude_data(self) -> np.array: """ :return: non-nan altitude data as numpy array """ return super().get_valid_data_channel_values("altitude")
def get_valid_bearing_accuracy_data(self) ‑>
-
:return: non-nan bearing accuracy data as numpy array
Expand source code
def get_valid_bearing_accuracy_data(self) -> np.array: """ :return: non-nan bearing accuracy data as numpy array """ return super().get_valid_data_channel_values("bearing_accuracy")
def get_valid_bearing_data(self) ‑>
-
:return: non-nan bearing data as numpy array
Expand source code
def get_valid_bearing_data(self) -> np.array: """ :return: non-nan bearing data as numpy array """ return super().get_valid_data_channel_values("bearing")
def get_valid_gps_timestamps_data(self) ‑>
-
:return: non-nan gps timestamps as numpy array
Expand source code
def get_valid_gps_timestamps_data(self) -> np.array: """ :return: non-nan gps timestamps as numpy array """ return super().get_valid_data_channel_values("gps_timestamps")
def get_valid_horizontal_accuracy_data(self) ‑>
-
:return: non-nan horizontal accuracy data as numpy array
Expand source code
def get_valid_horizontal_accuracy_data(self) -> np.array: """ :return: non-nan horizontal accuracy data as numpy array """ return super().get_valid_data_channel_values("horizontal_accuracy")
def get_valid_latitude_data(self) ‑>
-
:return: non-nan latitude data as numpy array
Expand source code
def get_valid_latitude_data(self) -> np.array: """ :return: non-nan latitude data as numpy array """ return super().get_valid_data_channel_values("latitude")
def get_valid_location_provider_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan location provider data as list of strings
Expand source code
def get_valid_location_provider_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan location provider data as list of strings """ pass # return super().get_valid_data_channel_values('location_provider')
def get_valid_longitude_data(self) ‑>
-
:return: non-nan longitude data as numpy array
Expand source code
def get_valid_longitude_data(self) -> np.array: """ :return: non-nan longitude data as numpy array """ return super().get_valid_data_channel_values("longitude")
def get_valid_speed_accuracy_data(self) ‑>
-
:return: non-nan speed accuracy data as numpy array
Expand source code
def get_valid_speed_accuracy_data(self) -> np.array: """ :return: non-nan speed accuracy data as numpy array """ return super().get_valid_data_channel_values("speed_accuracy")
def get_valid_speed_data(self) ‑>
-
:return: non-nan speed data as numpy array
Expand source code
def get_valid_speed_data(self) -> np.array: """ :return: non-nan speed data as numpy array """ return super().get_valid_data_channel_values("speed")
def get_valid_vertical_accuracy_data(self) ‑>
-
:return: non-nan vertical accuracy data as numpy array
Expand source code
def get_valid_vertical_accuracy_data(self) -> np.array: """ :return: non-nan vertical accuracy data as numpy array """ return super().get_valid_data_channel_values("vertical_accuracy")
def get_vertical_accuracy_data(self) ‑>
-
:return: vertical accuracy data as numpy array
Expand source code
def get_vertical_accuracy_data(self) -> np.array: """ :return: vertical accuracy data as numpy array """ return super().get_data_channel("vertical_accuracy")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class MagnetometerSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Magnetometer specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class MagnetometerSensor(SensorData): """ Magnetometer specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.MAGNETOMETER, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_magnetometer_x_data(self) -> np.array: """ :return: magnetometer x channel data as numpy array """ return super().get_data_channel("magnetometer_x") def get_valid_magnetometer_x_data(self) -> np.array: """ :return: non-nan magnetometer x channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_x") def get_magnetometer_y_data(self) -> np.array: """ :return: magnetometer y channel data as numpy array """ return super().get_data_channel("magnetometer_y") def get_valid_magnetometer_y_data(self) -> np.array: """ :return: non-nan magnetometer y channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_y") def get_magnetometer_z_data(self) -> np.array: """ :return: magnetometer z channel data as numpy array """ return super().get_data_channel("magnetometer_z") def get_valid_magnetometer_z_data(self) -> np.array: """ :return: non-nan magnetometer z channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_z")
Ancestors
Methods
def get_magnetometer_x_data(self) ‑>
-
:return: magnetometer x channel data as numpy array
Expand source code
def get_magnetometer_x_data(self) -> np.array: """ :return: magnetometer x channel data as numpy array """ return super().get_data_channel("magnetometer_x")
def get_magnetometer_y_data(self) ‑>
-
:return: magnetometer y channel data as numpy array
Expand source code
def get_magnetometer_y_data(self) -> np.array: """ :return: magnetometer y channel data as numpy array """ return super().get_data_channel("magnetometer_y")
def get_magnetometer_z_data(self) ‑>
-
:return: magnetometer z channel data as numpy array
Expand source code
def get_magnetometer_z_data(self) -> np.array: """ :return: magnetometer z channel data as numpy array """ return super().get_data_channel("magnetometer_z")
def get_valid_magnetometer_x_data(self) ‑>
-
:return: non-nan magnetometer x channel data as numpy array
Expand source code
def get_valid_magnetometer_x_data(self) -> np.array: """ :return: non-nan magnetometer x channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_x")
def get_valid_magnetometer_y_data(self) ‑>
-
:return: non-nan magnetometer y channel data as numpy array
Expand source code
def get_valid_magnetometer_y_data(self) -> np.array: """ :return: non-nan magnetometer y channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_y")
def get_valid_magnetometer_z_data(self) ‑>
-
:return: non-nan magnetometer z channel data as numpy array
Expand source code
def get_valid_magnetometer_z_data(self) -> np.array: """ :return: non-nan magnetometer z channel data as numpy array """ return super().get_valid_data_channel_values("magnetometer_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class OrientationSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Orientation specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class OrientationSensor(SensorData): """ Orientation specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.ORIENTATION, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_orientation_x_data(self) -> np.array: """ :return: orientation x channel data as numpy array """ return super().get_data_channel("orientation_x") def get_valid_orientation_x_data(self) -> np.array: """ :return: non-nan orientation x channel data as numpy array """ return super().get_valid_data_channel_values("orientation_x") def get_orientation_y_data(self) -> np.array: """ :return: orientation y channel data as numpy array """ return super().get_data_channel("orientation_y") def get_valid_orientation_y_data(self) -> np.array: """ :return: non-nan orientation y channel data as numpy array """ return super().get_valid_data_channel_values("orientation_y") def get_orientation_z_data(self) -> np.array: """ :return: orientation z channel data as numpy array """ return super().get_data_channel("orientation_z") def get_valid_orientation_z_data(self) -> np.array: """ :return: non-nan orientation z channel data as numpy array """ return super().get_valid_data_channel_values("orientation_z")
Ancestors
Methods
def get_orientation_x_data(self) ‑>
-
:return: orientation x channel data as numpy array
Expand source code
def get_orientation_x_data(self) -> np.array: """ :return: orientation x channel data as numpy array """ return super().get_data_channel("orientation_x")
def get_orientation_y_data(self) ‑>
-
:return: orientation y channel data as numpy array
Expand source code
def get_orientation_y_data(self) -> np.array: """ :return: orientation y channel data as numpy array """ return super().get_data_channel("orientation_y")
def get_orientation_z_data(self) ‑>
-
:return: orientation z channel data as numpy array
Expand source code
def get_orientation_z_data(self) -> np.array: """ :return: orientation z channel data as numpy array """ return super().get_data_channel("orientation_z")
def get_valid_orientation_x_data(self) ‑>
-
:return: non-nan orientation x channel data as numpy array
Expand source code
def get_valid_orientation_x_data(self) -> np.array: """ :return: non-nan orientation x channel data as numpy array """ return super().get_valid_data_channel_values("orientation_x")
def get_valid_orientation_y_data(self) ‑>
-
:return: non-nan orientation y channel data as numpy array
Expand source code
def get_valid_orientation_y_data(self) -> np.array: """ :return: non-nan orientation y channel data as numpy array """ return super().get_valid_data_channel_values("orientation_y")
def get_valid_orientation_z_data(self) ‑>
-
:return: non-nan orientation z channel data as numpy array
Expand source code
def get_valid_orientation_z_data(self) -> np.array: """ :return: non-nan orientation z channel data as numpy array """ return super().get_valid_data_channel_values("orientation_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class PressureSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Pressure specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class PressureSensor(SensorData): """ Pressure specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.PRESSURE, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_pressure_data(self) -> np.array: """ :return: pressure data as numpy array """ return super().get_data_channel("pressure") def get_valid_pressure_data(self) -> np.array: """ :return: non-nan pressure data as numpy array """ return super().get_valid_data_channel_values("pressure")
Ancestors
Methods
def get_pressure_data(self) ‑>
-
:return: pressure data as numpy array
Expand source code
def get_pressure_data(self) -> np.array: """ :return: pressure data as numpy array """ return super().get_data_channel("pressure")
def get_valid_pressure_data(self) ‑>
-
:return: non-nan pressure data as numpy array
Expand source code
def get_valid_pressure_data(self) -> np.array: """ :return: non-nan pressure data as numpy array """ return super().get_valid_data_channel_values("pressure")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class ProximitySensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Proximity specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class ProximitySensor(SensorData): """ Proximity specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.PROXIMITY, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_proximity_data(self) -> np.array: """ :return: proximity data as numpy array """ return super().get_data_channel("proximity") def get_valid_proximity_data(self) -> np.array: """ :return: non-nan proximity data as numpy array """ return super().get_valid_data_channel_values("proximity")
Ancestors
Methods
def get_proximity_data(self) ‑>
-
:return: proximity data as numpy array
Expand source code
def get_proximity_data(self) -> np.array: """ :return: proximity data as numpy array """ return super().get_data_channel("proximity")
def get_valid_proximity_data(self) ‑>
-
:return: non-nan proximity data as numpy array
Expand source code
def get_valid_proximity_data(self) -> np.array: """ :return: non-nan proximity data as numpy array """ return super().get_valid_data_channel_values("proximity")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class RelativeHumiditySensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Relative humidity specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class RelativeHumiditySensor(SensorData): """ Relative humidity specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.RELATIVE_HUMIDITY, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_relative_humidity_data(self) -> np.array: """ :return: relative humidity data as numpy array """ return super().get_data_channel("relative_humidity") def get_valid_relative_humidity_data(self) -> np.array: """ :return: non-nan relative humidity data as numpy array """ return super().get_valid_data_channel_values("relative_humidity")
Ancestors
Methods
def get_relative_humidity_data(self) ‑>
-
:return: relative humidity data as numpy array
Expand source code
def get_relative_humidity_data(self) -> np.array: """ :return: relative humidity data as numpy array """ return super().get_data_channel("relative_humidity")
def get_valid_relative_humidity_data(self) ‑>
-
:return: non-nan relative humidity data as numpy array
Expand source code
def get_valid_relative_humidity_data(self) -> np.array: """ :return: non-nan relative humidity data as numpy array """ return super().get_valid_data_channel_values("relative_humidity")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class RotationVectorSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Rotation vector specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class RotationVectorSensor(SensorData): """ Rotation vector specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.ROTATION_VECTOR, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_rotation_vector_x_data(self) -> np.array: """ :return: rotation vector x channel data as numpy array """ return super().get_data_channel("rotation_vector_x") def get_valid_rotation_vector_x_data(self) -> np.array: """ :return: non-nan rotation vector x channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_x") def get_rotation_vector_y_data(self) -> np.array: """ :return: rotation vector y channel data as numpy array """ return super().get_data_channel("rotation_vector_y") def get_valid_rotation_vector_y_data(self) -> np.array: """ :return: non-nan rotation vector y channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_y") def get_rotation_vector_z_data(self) -> np.array: """ :return: rotation vector z channel data as numpy array """ return super().get_data_channel("rotation_vector_z") def get_valid_rotation_vector_z_data(self) -> np.array: """ :return: non-nan rotation vector z channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_z")
Ancestors
Methods
def get_rotation_vector_x_data(self) ‑>
-
:return: rotation vector x channel data as numpy array
Expand source code
def get_rotation_vector_x_data(self) -> np.array: """ :return: rotation vector x channel data as numpy array """ return super().get_data_channel("rotation_vector_x")
def get_rotation_vector_y_data(self) ‑>
-
:return: rotation vector y channel data as numpy array
Expand source code
def get_rotation_vector_y_data(self) -> np.array: """ :return: rotation vector y channel data as numpy array """ return super().get_data_channel("rotation_vector_y")
def get_rotation_vector_z_data(self) ‑>
-
:return: rotation vector z channel data as numpy array
Expand source code
def get_rotation_vector_z_data(self) -> np.array: """ :return: rotation vector z channel data as numpy array """ return super().get_data_channel("rotation_vector_z")
def get_valid_rotation_vector_x_data(self) ‑>
-
:return: non-nan rotation vector x channel data as numpy array
Expand source code
def get_valid_rotation_vector_x_data(self) -> np.array: """ :return: non-nan rotation vector x channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_x")
def get_valid_rotation_vector_y_data(self) ‑>
-
:return: non-nan rotation vector y channel data as numpy array
Expand source code
def get_valid_rotation_vector_y_data(self) -> np.array: """ :return: non-nan rotation vector y channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_y")
def get_valid_rotation_vector_z_data(self) ‑>
-
:return: non-nan rotation vector z channel data as numpy array
Expand source code
def get_valid_rotation_vector_z_data(self) -> np.array: """ :return: non-nan rotation vector z channel data as numpy array """ return super().get_valid_data_channel_values("rotation_vector_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class SensorData (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, use_temp_dir: bool = False)
-
Generic Redvox Sensor class for API-independent analysis
Properties
name: string, name of sensor. REQUIRED
Protected
_type: SensorType, enumerated type of sensor, default UNKNOWN_SENSOR
_sample_rate_hz: float, sample rate in Hz of the sensor, default np.nan, usually 1/sample_interval_s
_sample_interval_s: float, mean duration in seconds between samples, default np.nan, usually 1/sample_rate
_sample_interval_std_s: float, standard deviation in seconds between samples, default np.nan
_is_sample_rate_fixed: bool, True if sample rate is constant, default False
_timestamps_altered: bool, True if timestamps in the sensor have been altered from their original values default False
_use_offset_model: bool, if True, use an offset model to correct timestamps, otherwise use the best known offset. default False
_errors: RedVoxExceptions, class containing a list of all errors encountered by the sensor.
_gaps: List of Tuples of floats, timestamps of data points on the edge of gaps, default empty list
_fs_writer: FileSystemWriter, handles file system i/o parameters
_data: pyarrow Table, used to store the data when it's not written to the disk. default None
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class SensorData: """ Generic Redvox Sensor class for API-independent analysis Properties: name: string, name of sensor. REQUIRED Protected: _type: SensorType, enumerated type of sensor, default UNKNOWN_SENSOR _sample_rate_hz: float, sample rate in Hz of the sensor, default np.nan, usually 1/sample_interval_s _sample_interval_s: float, mean duration in seconds between samples, default np.nan, usually 1/sample_rate _sample_interval_std_s: float, standard deviation in seconds between samples, default np.nan _is_sample_rate_fixed: bool, True if sample rate is constant, default False _timestamps_altered: bool, True if timestamps in the sensor have been altered from their original values default False _use_offset_model: bool, if True, use an offset model to correct timestamps, otherwise use the best known offset. default False _errors: RedVoxExceptions, class containing a list of all errors encountered by the sensor. _gaps: List of Tuples of floats, timestamps of data points on the edge of gaps, default empty list _fs_writer: FileSystemWriter, handles file system i/o parameters _data: pyarrow Table, used to store the data when it's not written to the disk. default None """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, use_temp_dir: bool = False, ): """ initialize the sensor data with params :param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False """ self._errors: RedVoxExceptions = RedVoxExceptions("Sensor") self.name: str = sensor_name self._type: SensorType = sensor_type self._sample_rate_hz: float = sample_rate_hz self._sample_interval_s: float = sample_interval_s self._sample_interval_std_s: float = sample_interval_std_s self._is_sample_rate_fixed: bool = is_sample_rate_fixed self._timestamps_altered: bool = are_timestamps_altered self._use_offset_model: bool = use_offset_model_for_correction if save_data: save_mode = FileSystemSaveMode.DISK elif use_temp_dir: save_mode = FileSystemSaveMode.TEMP else: save_mode = FileSystemSaveMode.MEM self._fs_writer = Fsw("", "parquet", base_dir, save_mode) self._gaps: List[Tuple] = gaps if gaps else [] set_data_as_sensor_data = True if sensor_data is not None: if "timestamps" not in sensor_data.schema.names: self._errors.append('must have a column titled "timestamps"') elif sensor_data["timestamps"].length() > 0: set_data_as_sensor_data = False if calculate_stats: self.organize_and_update_stats(sensor_data) elif sensor_data["timestamps"].length() > 1: self.sort_by_data_timestamps(sensor_data) else: self.write_pyarrow_table(sensor_data) if set_data_as_sensor_data: self._data = sensor_data if show_errors: self.print_errors() def __repr__(self): return ( f"name: {self.name}, " f"type: {self._type.value}, " f"num_samples: {self.num_samples()}, " f"sample_rate_hz: {self._sample_rate_hz}, " f"sample_interval_s: {self._sample_interval_s}, " f"sample_interval_std_s: {self._sample_interval_std_s}, " f"is_sample_rate_fixed: {self._is_sample_rate_fixed}, " f"timestamps_altered: {self._timestamps_altered}, " f"use_offset_model: {self._use_offset_model}, " f"gaps: {[g for g in self._gaps]}" ) def __str__(self): return ( f"name: {self.name}, " f"type: {self._type.name}, " f"num_samples: {self.num_samples()}, " f"sample_rate_hz: {self._sample_rate_hz}, " f"sample_interval_s: {self._sample_interval_s}, " f"sample_interval_std_s: {self._sample_interval_std_s}, " f"is_sample_rate_fixed: {self._is_sample_rate_fixed}, " f"timestamps_altered: {self._timestamps_altered}, " f"use_offset_model: {self._use_offset_model}" ) @staticmethod def from_dir( sensor_name: str, data_path: str, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, use_temp_dir: bool = False, ) -> "SensorData": """ init but with a path to directory containing parquet file(s) instead of a table of data :param sensor_name: name of the sensor :param data_path: path to the directory containing the parquet files :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object """ result = SensorData( sensor_name, ds.dataset(data_path, format="parquet", exclude_invalid_files=True).to_table(), sensor_type, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, data_path, use_temp_dir=use_temp_dir, ) return result @staticmethod def from_dict( sensor_name: str, sensor_data: Dict, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, arrow_dir: str = "", use_temp_dir: bool = False, ) -> "SensorData": """ init but with a dictionary :param sensor_name: name of the sensor :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: dict with the timestamps and sensor data; first column is always the timestamps, the other columns are the data channels in the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param arrow_dir: directory to save pyarrow table, default "" (current dir). default temporary dir if not saving data :param use_temp_dir: If True, use a temporary directory to save the data. default False :return: SensorData object """ return SensorData( sensor_name, pa.Table.from_pydict(sensor_data), sensor_type, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, arrow_dir, use_temp_dir=use_temp_dir, ) def save(self, file_name: Optional[str] = None) -> Optional[Path]: """ Saves the sensor to disk. Does nothing if saving is not enabled :param file_name: Optional file name to save as. Do not include a file extension. Default None If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: The path to the saved file or None if unable to save. """ if self._fs_writer.is_save_disk(): return self.to_json_file(file_name) return None def load(self, in_dir: str) -> "SensorData": """ :param in_dir: structured directory with json metadata file to load :return: SensorData using data from files """ file = get_json_file(in_dir) if file is None: st = SensorData("LoadError") st.append_error("File to load Sensor not found.") return self else: return self.from_json_file(in_dir, file) def set_save_mode(self, new_save_mode: FileSystemSaveMode): """ changes the save mode to new_save_mode :param new_save_mode: FileSystemSaveMode to change to """ self._fs_writer.set_save_mode(new_save_mode) def is_save_to_disk(self) -> bool: """ :return: True if sensor will be saved to disk """ return self._fs_writer.is_use_disk() def set_save_to_disk(self, save: bool): """ :param save: If True, save to disk """ self._fs_writer.set_use_disk(save) def set_file_name(self, new_file: Optional[str] = None): """ * set the pyarrow file name or use the default: {sensor_type}_{int(first_timestamp)} * Do not give an extension :param new_file: optional file name to change to; default None (use default name) """ self._fs_writer.file_name = new_file if new_file else f"{self._type.name}_{int(self.first_data_timestamp())}" def full_file_name(self) -> str: """ :return: full name of parquet file containing the data """ return self._fs_writer.full_name() def file_name(self) -> str: """ :return: file name without extension """ return self._fs_writer.file_name def set_save_dir(self, new_dir: str = "."): """ set the pyarrow directory or use the default: "." (current directory) :param new_dir: the directory to change to; default "." (use current directory) """ self._fs_writer.base_dir = new_dir def save_dir(self) -> str: """ :return: directory containing parquet files for the sensor """ return self._fs_writer.save_dir() def full_path(self) -> str: """ :return: the full path to the data file """ return self._fs_writer.full_path() def fs_writer(self) -> Fsw: """ :return: FileSystemWriter object """ return self._fs_writer def set_use_temp_dir(self, use_temp_dir: bool = False): """ :param use_temp_dir: if True, use temp dir to save data. default False """ self._fs_writer.set_use_temp(use_temp_dir) def pyarrow_ds(self, base_dir: Optional[str] = None) -> ds.Dataset: """ :param base_dir: optional directory to use when loading the dataset. if None, use self.save_dir() :return: the dataset stored in base_dir """ if base_dir is None: base_dir = self.save_dir() return ds.dataset(base_dir, format="parquet", exclude_invalid_files=True) def pyarrow_table(self) -> pa.Table: """ :return: the table defined by the _data property or the dataset stored in self.save_dir() """ if self._data or self._fs_writer.is_use_mem(): return self._data return self.pyarrow_ds().to_table() def data_df(self) -> pd.DataFrame: """ :return: the pandas dataframe defined by the dataset stored in self.save_dir() """ return self.pyarrow_table().to_pandas() def write_pyarrow_table(self, table: pa.Table, update_file_name: Optional[bool] = True): """ saves the pyarrow table to disk or to memory. * if there is no data or there is no column named timestamps in the table, an error will be created * if writing to disk, uses a default filename: {sensor_type}_{first_timestamp}.parquet * uses the directory defined by self.save_dir(). Creates the directory if it doesn't exist and removes any existing parquet files from the directory if it exists :param table: the table to write :param update_file_name: if True, updates the file name to match the new data. Default True """ if table.num_rows < 1 or "timestamps" not in table.schema.names: self._errors.append("Attempted to write invalid table.") elif self._fs_writer.is_save_disk(): self._fs_writer.create_dir() if update_file_name: self.set_file_name(f"{self.type().name}_{int(table['timestamps'][0].as_py())}") pq.write_table(table, self.full_path()) self._data = None else: self._data = table def empty_data_table(self): """ CAUTION: REMOVES ALL DATA AND COLUMNS FROM THE TABLE """ tbl = pa.Table.from_pydict({"timestamps": []}) if self._fs_writer.is_save_disk(): pq.write_table(tbl, self.full_path()) self._data = None else: self._data = tbl def move_pyarrow_dir(self, new_dir: str) -> Path: """ Move the sensor's pyarrow files to a new directory :param new_dir: directory to save files into """ old_sensor_save_dir = self.save_dir() self.set_save_dir(os.path.join(new_dir, self._type.name)) for r, d, f in os.walk(old_sensor_save_dir): for file in f: self._fs_writer.create_dir() os.rename(os.path.join(old_sensor_save_dir, file), os.path.join(self.save_dir(), file)) return Path(self.save_dir()) def errors(self) -> RedVoxExceptions: """ :return: errors of the sensor """ return self._errors def gaps(self) -> List[Tuple]: """ :return: start and end timestamps of gaps in data """ return self._gaps def type(self) -> SensorType: """ :return: type of sensor """ return self._type def type_as_str(self) -> str: """ gets the sensor type as a string :return: sensor type of the sensor as a string """ return self._type.name def sample_rate_hz(self) -> float: """ :return: sample rate in Hz """ return self._sample_rate_hz def sample_interval_s(self) -> float: """ :return: mean sample interval in seconds """ return self._sample_interval_s def sample_interval_std_s(self) -> float: """ :return: sample interval standard deviation in seconds """ return self._sample_interval_std_s def is_sample_rate_fixed(self) -> bool: """ :return: true if sample rate of sensor is constant """ return self._is_sample_rate_fixed def is_timestamps_altered(self) -> bool: """ :return: true if timestamps have been changed from original data values """ return self._timestamps_altered def used_offset_model(self) -> bool: """ :return: true if an offset model was used to perform timestamp corrections """ return self._use_offset_model def sort_by_data_timestamps(self, ptable: pa.Table, ascending: bool = True): """ sorts the data based on timestamps :param ptable: pyarrow table to sort :param ascending: if True, timestamps are sorted in ascending order, else sort by descending order """ if ascending: order = "ascending" else: order = "descending" data = pc.take(ptable, pc.sort_indices(ptable, sort_keys=[("timestamps", order)])) self.write_pyarrow_table(data) def organize_and_update_stats(self, ptable: pa.Table) -> "SensorData": """ sorts the data by timestamps, then if the sample rate is not fixed, recalculates the sample rate, interval, and interval std dev. If there is only one value, sets the sample rate, interval, and interval std dev to np.nan. Updates self with the new values :param ptable: pyarrow table to update :return: updated version of self """ self.sort_by_data_timestamps(ptable) if not self._is_sample_rate_fixed: if self.num_samples() > 1: timestamp_diffs = np.diff(self.data_timestamps()) self._sample_interval_s = dtu.microseconds_to_seconds(float(np.mean(timestamp_diffs))) self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(timestamp_diffs))) self._sample_rate_hz = np.nan if self.is_sample_interval_invalid() else 1 / self._sample_interval_s else: self._sample_interval_s = np.nan self._sample_interval_std_s = np.nan self._sample_rate_hz = np.nan return self def append_sensor(self, new_sensor: "SensorData", recalculate_stats: bool = False) -> "SensorData": """ append the new data to the sensor, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object :param new_sensor: sensor containing data to add to the calling sensor :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object """ _arrow: pa.Table = pa.concat_tables([self.pyarrow_table(), new_sensor.pyarrow_table()]) if recalculate_stats and not self._is_sample_rate_fixed: self.organize_and_update_stats(_arrow) else: self.write_pyarrow_table(_arrow) return self def append_data(self, new_data: List[np.array], recalculate_stats: bool = False) -> "SensorData": """ append the new data to the dataframe, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object :param new_data: list of arrays containing data to add to the sensor's dataframe :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object """ _arrow = pa.concat_tables( [ self.pyarrow_table(), pa.Table.from_arrays(arrays=[pa.array(s) for s in new_data], names=self.data_channels()), ] ) if recalculate_stats and not self._is_sample_rate_fixed: self.organize_and_update_stats(_arrow) else: self.write_pyarrow_table(_arrow) return self def is_sample_interval_invalid(self) -> bool: """ :return: True if sample interval is np.nan or equal to 0.0 """ return np.isnan(self._sample_interval_s) or self._sample_interval_s == 0.0 def data_timestamps(self) -> np.array: """ :return: the timestamps as a numpy array or [np.nan] if none exist """ if "timestamps" in self.pyarrow_table().schema.names: return self.pyarrow_table()["timestamps"].to_numpy() else: return np.array([np.nan]) def unaltered_data_timestamps(self) -> np.array: """ :return: the unaltered timestamps as a numpy array """ if "unaltered_timestamps" in self.pyarrow_table().schema.names: return self.pyarrow_table()["unaltered_timestamps"].to_numpy() else: return np.array([np.nan]) def first_data_timestamp(self) -> float: """ :return: timestamp of the first data point or np.nan if no timestamps """ return self.data_timestamps()[0] def last_data_timestamp(self) -> float: """ :return: timestamp of the last data point or np.nan if no timestamps """ return self.data_timestamps()[-1] def num_samples(self) -> int: """ :return: the number of rows (samples) in the dataframe """ if self.pyarrow_table(): return self.pyarrow_table().num_rows return 0 def samples(self) -> np.ndarray: """ gets the non-timestamp samples of dataframe :return: the data values of the dataframe as a numpy ndarray """ return self.data_df().iloc[:, 2:].T.to_numpy() def data_channels(self) -> List[str]: """ :return: a list of the names of the columns (data channels) of the data """ if self.pyarrow_table(): return self.pyarrow_table().schema.names return [] def get_data_channel(self, channel_name: str) -> np.array: """ gets the data channel specified, raises an error and lists valid fields if channel_name is not in the dataframe :param channel_name: the name of the channel to get data for :return: the data values of the channel as a numpy array or list of strings for enumerated channels """ if not self.pyarrow_table(): self._errors.append(f"WARNING: There are no channels to access in this Sensor!") return [] _arrow = self.pyarrow_table() if channel_name not in _arrow.schema.names: self._errors.append(f"WARNING: {channel_name} does not exist; try one of {_arrow.schema.names}") return [] if channel_name in NON_NUMERIC_COLUMNS: return np.array([COLUMN_TO_ENUM_FN[channel_name](c.as_py()) for c in _arrow[channel_name]]) return _arrow[channel_name].to_numpy() def _get_non_numeric_data_channel(self, channel_name: str) -> List[str]: """ get_data_channel but specifically enumerated channels :param channel_name: the name of the channel to get data for :return: the data values of the channel as a list of strings """ if not self.pyarrow_table(): self._errors.append(f"WARNING: There are no channels to access in this Sensor!") else: _arrow = self.pyarrow_table() if channel_name in NON_NUMERIC_COLUMNS: return [COLUMN_TO_ENUM_FN[channel_name](c.as_py()) for c in _arrow[channel_name]] self._errors.append(f"WARNING: {channel_name} does not exist") return [] def get_valid_data_channel_values(self, channel_name: str) -> np.array: """ gets all non-nan values from the channel specified :param channel_name: the name of the channel to get data for :return: non-nan values of the channel as a numpy array """ channel_data = self.get_data_channel(channel_name) return channel_data[~np.isnan(channel_data)] def _get_valid_non_numeric_data_channel_values(self, channel_name: str) -> List[str]: """ NOT IMPLEMENTED return non-nan'd values; technically this evaluates an actual numeric channel first :param channel_name: :return: """ pass def print_errors(self): """ print all errors to screen """ self._errors.print() def extend_errors(self, errors: RedVoxExceptions): """ add errors to the Sensor's errors :param errors: errors to add """ self._errors.extend_error(errors) def update_data_timestamps(self, offset_model: om.OffsetModel): """ updates the timestamps of the data points :param offset_model: model used to update the timestamps """ slope = ( dtu.seconds_to_microseconds(self._sample_interval_s) * (1 + offset_model.slope) if self._use_offset_model else dtu.seconds_to_microseconds(self._sample_interval_s) ) if self._type == SensorType.AUDIO: # use the model to update the first timestamp or add the best offset (model's intercept value) timestamps = pa.array( calc_evenly_sampled_timestamps( offset_model.update_time(self.unaltered_data_timestamps()[0], self._use_offset_model), self.num_samples(), slope, ) ) else: timestamps = pa.array( offset_model.update_timestamps(self.unaltered_data_timestamps(), self._use_offset_model) ) self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", timestamps)) time_diffs = np.floor(np.diff(self.data_timestamps())) if len(time_diffs) > 1: self._sample_interval_s = dtu.microseconds_to_seconds(slope) if self._sample_interval_s > 0: self._sample_rate_hz = 1 / self._sample_interval_s self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(time_diffs))) self._timestamps_altered = True def set_original_timestamps(self): """ converts all timestamps in the sensor to the original values from the data """ self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", self.unaltered_data_timestamps())) self._timestamps_altered = False def interpolate( self, interpolate_timestamp: float, first_point: int, second_point: int = 0, copy: bool = True ) -> pa.Table: """ interpolates two points at the chosen timestamp. If copy is true, copies the values of the closest point, otherwise interpolates any numerical value. Non-numeric values are set to a copy of the closest point. :param interpolate_timestamp: timestamp to interpolate other values :param first_point: index of first point :param second_point: delta to second point, default 0 (same as first point) :param copy: if True, copies the values of the first point, otherwise uses the interpolated value. Default True :return: pyarrow Table of interpolated points """ start_point = self.pyarrow_table().slice(first_point, 1).to_pydict() if not copy and second_point: i_p = {} end_point = self.pyarrow_table().slice(first_point + second_point, 1).to_pydict() first_closer = np.abs(start_point[0] - interpolate_timestamp) <= np.abs( end_point[0] - interpolate_timestamp ) for col in self.pyarrow_table().schema.names: # process each column independently into new table object if col not in NON_INTERPOLATED_COLUMNS + NON_NUMERIC_COLUMNS: numeric_diff = end_point[col] - start_point[col] numeric_diff = (numeric_diff / numeric_diff["timestamps"]) * ( interpolate_timestamp - start_point[col] ) + start_point[col] i_p[col] = numeric_diff elif col in NON_NUMERIC_COLUMNS: if first_closer: i_p[col] = start_point[col] else: i_p[col] = end_point[col] else: i_p = start_point i_p["timestamps"] = [interpolate_timestamp] return pa.Table.from_pydict(i_p) def as_dict(self) -> dict: """ :return: sensor as dict """ return { "name": self.name, "type": self._type.name, "num_samples": self.num_samples(), "sample_rate_hz": self._sample_rate_hz, "sample_interval_s": self._sample_interval_s, "sample_interval_std_s": self._sample_interval_std_s, "is_sample_rate_fixed": self._is_sample_rate_fixed, "timestamps_altered": self._timestamps_altered, "use_offset_model": self._use_offset_model, "gaps": self._gaps, "base_dir": os.path.basename(self._fs_writer.save_dir()), "errors": self._errors.as_dict(), } def to_json(self) -> str: """ :return: sensor as json string """ return io.to_json(self) def to_json_file(self, file_name: Optional[str] = None) -> Path: """ saves the sensor as json and data in the same directory. :param file_name: the optional base file name. Do not include a file extension. If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: path to json file """ self.write_pyarrow_table(self.pyarrow_table()) return io.to_json_file(self, file_name) @staticmethod def from_json_file(file_dir: str, file_name: Optional[str] = None) -> "SensorData": """ convert contents of json file to Sensor :param file_dir: full path to containing directory for the file :param file_name: optional name of file and extension to load data from; if not specified, finds the first one :return: SensorData object """ if file_name is None: file_name = get_json_file(file_dir) if file_name is None: result = SensorData("Empty") result.append_error("JSON file to load Sensor from not found.") return result json_data = json_file_to_dict(os.path.join(file_dir, file_name)) if "name" in json_data.keys(): result = SensorData.from_dir( json_data["name"], file_dir, SensorType[json_data["type"]], json_data["sample_rate_hz"], json_data["sample_interval_s"], json_data["sample_interval_std_s"], json_data["is_sample_rate_fixed"], json_data["timestamps_altered"], False, json_data["use_offset_model"], ) result.set_errors(RedVoxExceptions.from_dict(json_data["errors"])) result.set_save_to_disk(True) result.set_file_name() result.set_gaps(json_data["gaps"]) else: result = SensorData("Empty") result.append_error(f"Loading from {file_name} failed; missing Sensor name.") return result def class_from_type(self) -> "SensorData": """ Updates the class to be a specific type of sensor based on self._type :return: Self """ if self._type in SensorType: sensor_class_from_type = { SensorType.AUDIO: AudioSensor, SensorType.COMPRESSED_AUDIO: CompressedAudioSensor, SensorType.IMAGE: ImageSensor, SensorType.LOCATION: LocationSensor, SensorType.BEST_LOCATION: BestLocationSensor, SensorType.STATION_HEALTH: StationHealthSensor, SensorType.LIGHT: LightSensor, SensorType.PRESSURE: PressureSensor, SensorType.PROXIMITY: ProximitySensor, SensorType.INFRARED: ProximitySensor, SensorType.RELATIVE_HUMIDITY: RelativeHumiditySensor, SensorType.AMBIENT_TEMPERATURE: AmbientTemperatureSensor, SensorType.ACCELEROMETER: AccelerometerSensor, SensorType.GYROSCOPE: GyroscopeSensor, SensorType.MAGNETOMETER: MagnetometerSensor, SensorType.ORIENTATION: OrientationSensor, SensorType.GRAVITY: GravitySensor, SensorType.LINEAR_ACCELERATION: LinearAccelerationSensor, SensorType.ROTATION_VECTOR: RotationVectorSensor, SensorType.VELOCITY: VelocitySensor, SensorType.UNKNOWN_SENSOR: SensorData, } self.__class__ = sensor_class_from_type[self._type] return self def set_errors(self, errors: RedVoxExceptions): """ sets the errors of the Sensor :param errors: errors to set """ self._errors = errors def append_error(self, error: str): """ add an error to the Sensor :param error: error to add """ self._errors.append(error) def set_gaps(self, gaps: List[Tuple]): """ sets the gaps of the Sensor :param gaps: gaps to set """ self._gaps = gaps
Subclasses
- AccelerometerSensor
- AmbientTemperatureSensor
- AudioSensor
- BestLocationSensor
- CompressedAudioSensor
- GravitySensor
- GyroscopeSensor
- ImageSensor
- LightSensor
- LinearAccelerationSensor
- LocationSensor
- MagnetometerSensor
- OrientationSensor
- PressureSensor
- ProximitySensor
- RelativeHumiditySensor
- RotationVectorSensor
- StationHealthSensor
- VelocitySensor
Static methods
def from_dict(sensor_name: str, sensor_data: Dict, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, arrow_dir: str = '', use_temp_dir: bool = False) ‑> SensorData
-
init but with a dictionary
:param sensor_name: name of the sensor :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: dict with the timestamps and sensor data; first column is always the timestamps, the other columns are the data channels in the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param arrow_dir: directory to save pyarrow table, default "" (current dir). default temporary dir if not saving data :param use_temp_dir: If True, use a temporary directory to save the data. default False :return: SensorData object
Expand source code
@staticmethod def from_dict( sensor_name: str, sensor_data: Dict, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, arrow_dir: str = "", use_temp_dir: bool = False, ) -> "SensorData": """ init but with a dictionary :param sensor_name: name of the sensor :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: dict with the timestamps and sensor data; first column is always the timestamps, the other columns are the data channels in the sensor :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param arrow_dir: directory to save pyarrow table, default "" (current dir). default temporary dir if not saving data :param use_temp_dir: If True, use a temporary directory to save the data. default False :return: SensorData object """ return SensorData( sensor_name, pa.Table.from_pydict(sensor_data), sensor_type, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, arrow_dir, use_temp_dir=use_temp_dir, )
def from_dir(sensor_name: str, data_path: str, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, use_temp_dir: bool = False) ‑> SensorData
-
init but with a path to directory containing parquet file(s) instead of a table of data
:param sensor_name: name of the sensor :param data_path: path to the directory containing the parquet files :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object
Expand source code
@staticmethod def from_dir( sensor_name: str, data_path: str, sensor_type: SensorType = SensorType.UNKNOWN_SENSOR, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, use_temp_dir: bool = False, ) -> "SensorData": """ init but with a path to directory containing parquet file(s) instead of a table of data :param sensor_name: name of the sensor :param data_path: path to the directory containing the parquet files :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sample_rate_hz: sample rate in hz of the data, default np.nan :param sample_interval_s: sample interval in seconds of the data, default np.nan :param sample_interval_std_s: std dev of sample interval in seconds of the data, default np.nan :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param use_temp_dir: if True, save the data using a temporary directory. default False :return: SensorData object """ result = SensorData( sensor_name, ds.dataset(data_path, format="parquet", exclude_invalid_files=True).to_table(), sensor_type, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, data_path, use_temp_dir=use_temp_dir, ) return result
def from_json_file(file_dir: str, file_name: Optional[str] = None) ‑> SensorData
-
convert contents of json file to Sensor
:param file_dir: full path to containing directory for the file :param file_name: optional name of file and extension to load data from; if not specified, finds the first one :return: SensorData object
Expand source code
@staticmethod def from_json_file(file_dir: str, file_name: Optional[str] = None) -> "SensorData": """ convert contents of json file to Sensor :param file_dir: full path to containing directory for the file :param file_name: optional name of file and extension to load data from; if not specified, finds the first one :return: SensorData object """ if file_name is None: file_name = get_json_file(file_dir) if file_name is None: result = SensorData("Empty") result.append_error("JSON file to load Sensor from not found.") return result json_data = json_file_to_dict(os.path.join(file_dir, file_name)) if "name" in json_data.keys(): result = SensorData.from_dir( json_data["name"], file_dir, SensorType[json_data["type"]], json_data["sample_rate_hz"], json_data["sample_interval_s"], json_data["sample_interval_std_s"], json_data["is_sample_rate_fixed"], json_data["timestamps_altered"], False, json_data["use_offset_model"], ) result.set_errors(RedVoxExceptions.from_dict(json_data["errors"])) result.set_save_to_disk(True) result.set_file_name() result.set_gaps(json_data["gaps"]) else: result = SensorData("Empty") result.append_error(f"Loading from {file_name} failed; missing Sensor name.") return result
Methods
def append_data(self, new_data: List[
], recalculate_stats: bool = False) ‑> SensorData -
append the new data to the dataframe, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object
:param new_data: list of arrays containing data to add to the sensor's dataframe :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object
Expand source code
def append_data(self, new_data: List[np.array], recalculate_stats: bool = False) -> "SensorData": """ append the new data to the dataframe, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object :param new_data: list of arrays containing data to add to the sensor's dataframe :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object """ _arrow = pa.concat_tables( [ self.pyarrow_table(), pa.Table.from_arrays(arrays=[pa.array(s) for s in new_data], names=self.data_channels()), ] ) if recalculate_stats and not self._is_sample_rate_fixed: self.organize_and_update_stats(_arrow) else: self.write_pyarrow_table(_arrow) return self
def append_error(self, error: str)
-
add an error to the Sensor
:param error: error to add
Expand source code
def append_error(self, error: str): """ add an error to the Sensor :param error: error to add """ self._errors.append(error)
def append_sensor(self, new_sensor: SensorData, recalculate_stats: bool = False) ‑> SensorData
-
append the new data to the sensor, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object
:param new_sensor: sensor containing data to add to the calling sensor :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object
Expand source code
def append_sensor(self, new_sensor: "SensorData", recalculate_stats: bool = False) -> "SensorData": """ append the new data to the sensor, update the sensor's stats on demand if it doesn't have a fixed sample rate, then return the updated object :param new_sensor: sensor containing data to add to the calling sensor :param recalculate_stats: if True and the sensor does not have a fixed sample rate, sort the timestamps, recalculate the sample rate, interval, and interval std dev, default False :return: the updated object """ _arrow: pa.Table = pa.concat_tables([self.pyarrow_table(), new_sensor.pyarrow_table()]) if recalculate_stats and not self._is_sample_rate_fixed: self.organize_and_update_stats(_arrow) else: self.write_pyarrow_table(_arrow) return self
def as_dict(self) ‑> dict
-
:return: sensor as dict
Expand source code
def as_dict(self) -> dict: """ :return: sensor as dict """ return { "name": self.name, "type": self._type.name, "num_samples": self.num_samples(), "sample_rate_hz": self._sample_rate_hz, "sample_interval_s": self._sample_interval_s, "sample_interval_std_s": self._sample_interval_std_s, "is_sample_rate_fixed": self._is_sample_rate_fixed, "timestamps_altered": self._timestamps_altered, "use_offset_model": self._use_offset_model, "gaps": self._gaps, "base_dir": os.path.basename(self._fs_writer.save_dir()), "errors": self._errors.as_dict(), }
def class_from_type(self) ‑> SensorData
-
Updates the class to be a specific type of sensor based on self._type
:return: Self
Expand source code
def class_from_type(self) -> "SensorData": """ Updates the class to be a specific type of sensor based on self._type :return: Self """ if self._type in SensorType: sensor_class_from_type = { SensorType.AUDIO: AudioSensor, SensorType.COMPRESSED_AUDIO: CompressedAudioSensor, SensorType.IMAGE: ImageSensor, SensorType.LOCATION: LocationSensor, SensorType.BEST_LOCATION: BestLocationSensor, SensorType.STATION_HEALTH: StationHealthSensor, SensorType.LIGHT: LightSensor, SensorType.PRESSURE: PressureSensor, SensorType.PROXIMITY: ProximitySensor, SensorType.INFRARED: ProximitySensor, SensorType.RELATIVE_HUMIDITY: RelativeHumiditySensor, SensorType.AMBIENT_TEMPERATURE: AmbientTemperatureSensor, SensorType.ACCELEROMETER: AccelerometerSensor, SensorType.GYROSCOPE: GyroscopeSensor, SensorType.MAGNETOMETER: MagnetometerSensor, SensorType.ORIENTATION: OrientationSensor, SensorType.GRAVITY: GravitySensor, SensorType.LINEAR_ACCELERATION: LinearAccelerationSensor, SensorType.ROTATION_VECTOR: RotationVectorSensor, SensorType.VELOCITY: VelocitySensor, SensorType.UNKNOWN_SENSOR: SensorData, } self.__class__ = sensor_class_from_type[self._type] return self
def data_channels(self) ‑> List[str]
-
:return: a list of the names of the columns (data channels) of the data
Expand source code
def data_channels(self) -> List[str]: """ :return: a list of the names of the columns (data channels) of the data """ if self.pyarrow_table(): return self.pyarrow_table().schema.names return []
def data_df(self) ‑> pandas.core.frame.DataFrame
-
:return: the pandas dataframe defined by the dataset stored in self.save_dir()
Expand source code
def data_df(self) -> pd.DataFrame: """ :return: the pandas dataframe defined by the dataset stored in self.save_dir() """ return self.pyarrow_table().to_pandas()
def data_timestamps(self) ‑>
-
:return: the timestamps as a numpy array or [np.nan] if none exist
Expand source code
def data_timestamps(self) -> np.array: """ :return: the timestamps as a numpy array or [np.nan] if none exist """ if "timestamps" in self.pyarrow_table().schema.names: return self.pyarrow_table()["timestamps"].to_numpy() else: return np.array([np.nan])
def empty_data_table(self)
-
CAUTION: REMOVES ALL DATA AND COLUMNS FROM THE TABLE
Expand source code
def empty_data_table(self): """ CAUTION: REMOVES ALL DATA AND COLUMNS FROM THE TABLE """ tbl = pa.Table.from_pydict({"timestamps": []}) if self._fs_writer.is_save_disk(): pq.write_table(tbl, self.full_path()) self._data = None else: self._data = tbl
def errors(self) ‑> RedVoxExceptions
-
:return: errors of the sensor
Expand source code
def errors(self) -> RedVoxExceptions: """ :return: errors of the sensor """ return self._errors
def extend_errors(self, errors: RedVoxExceptions)
-
add errors to the Sensor's errors
:param errors: errors to add
Expand source code
def extend_errors(self, errors: RedVoxExceptions): """ add errors to the Sensor's errors :param errors: errors to add """ self._errors.extend_error(errors)
def file_name(self) ‑> str
-
:return: file name without extension
Expand source code
def file_name(self) -> str: """ :return: file name without extension """ return self._fs_writer.file_name
def first_data_timestamp(self) ‑> float
-
:return: timestamp of the first data point or np.nan if no timestamps
Expand source code
def first_data_timestamp(self) -> float: """ :return: timestamp of the first data point or np.nan if no timestamps """ return self.data_timestamps()[0]
def fs_writer(self) ‑> FileSystemWriter
-
:return: FileSystemWriter object
Expand source code
def fs_writer(self) -> Fsw: """ :return: FileSystemWriter object """ return self._fs_writer
def full_file_name(self) ‑> str
-
:return: full name of parquet file containing the data
Expand source code
def full_file_name(self) -> str: """ :return: full name of parquet file containing the data """ return self._fs_writer.full_name()
def full_path(self) ‑> str
-
:return: the full path to the data file
Expand source code
def full_path(self) -> str: """ :return: the full path to the data file """ return self._fs_writer.full_path()
def gaps(self) ‑> List[Tuple]
-
:return: start and end timestamps of gaps in data
Expand source code
def gaps(self) -> List[Tuple]: """ :return: start and end timestamps of gaps in data """ return self._gaps
def get_data_channel(self, channel_name: str) ‑>
-
gets the data channel specified, raises an error and lists valid fields if channel_name is not in the dataframe
:param channel_name: the name of the channel to get data for :return: the data values of the channel as a numpy array or list of strings for enumerated channels
Expand source code
def get_data_channel(self, channel_name: str) -> np.array: """ gets the data channel specified, raises an error and lists valid fields if channel_name is not in the dataframe :param channel_name: the name of the channel to get data for :return: the data values of the channel as a numpy array or list of strings for enumerated channels """ if not self.pyarrow_table(): self._errors.append(f"WARNING: There are no channels to access in this Sensor!") return [] _arrow = self.pyarrow_table() if channel_name not in _arrow.schema.names: self._errors.append(f"WARNING: {channel_name} does not exist; try one of {_arrow.schema.names}") return [] if channel_name in NON_NUMERIC_COLUMNS: return np.array([COLUMN_TO_ENUM_FN[channel_name](c.as_py()) for c in _arrow[channel_name]]) return _arrow[channel_name].to_numpy()
def get_valid_data_channel_values(self, channel_name: str) ‑>
-
gets all non-nan values from the channel specified
:param channel_name: the name of the channel to get data for :return: non-nan values of the channel as a numpy array
Expand source code
def get_valid_data_channel_values(self, channel_name: str) -> np.array: """ gets all non-nan values from the channel specified :param channel_name: the name of the channel to get data for :return: non-nan values of the channel as a numpy array """ channel_data = self.get_data_channel(channel_name) return channel_data[~np.isnan(channel_data)]
def interpolate(self, interpolate_timestamp: float, first_point: int, second_point: int = 0, copy: bool = True) ‑> pyarrow.lib.Table
-
interpolates two points at the chosen timestamp. If copy is true, copies the values of the closest point, otherwise interpolates any numerical value. Non-numeric values are set to a copy of the closest point.
:param interpolate_timestamp: timestamp to interpolate other values :param first_point: index of first point :param second_point: delta to second point, default 0 (same as first point) :param copy: if True, copies the values of the first point, otherwise uses the interpolated value. Default True :return: pyarrow Table of interpolated points
Expand source code
def interpolate( self, interpolate_timestamp: float, first_point: int, second_point: int = 0, copy: bool = True ) -> pa.Table: """ interpolates two points at the chosen timestamp. If copy is true, copies the values of the closest point, otherwise interpolates any numerical value. Non-numeric values are set to a copy of the closest point. :param interpolate_timestamp: timestamp to interpolate other values :param first_point: index of first point :param second_point: delta to second point, default 0 (same as first point) :param copy: if True, copies the values of the first point, otherwise uses the interpolated value. Default True :return: pyarrow Table of interpolated points """ start_point = self.pyarrow_table().slice(first_point, 1).to_pydict() if not copy and second_point: i_p = {} end_point = self.pyarrow_table().slice(first_point + second_point, 1).to_pydict() first_closer = np.abs(start_point[0] - interpolate_timestamp) <= np.abs( end_point[0] - interpolate_timestamp ) for col in self.pyarrow_table().schema.names: # process each column independently into new table object if col not in NON_INTERPOLATED_COLUMNS + NON_NUMERIC_COLUMNS: numeric_diff = end_point[col] - start_point[col] numeric_diff = (numeric_diff / numeric_diff["timestamps"]) * ( interpolate_timestamp - start_point[col] ) + start_point[col] i_p[col] = numeric_diff elif col in NON_NUMERIC_COLUMNS: if first_closer: i_p[col] = start_point[col] else: i_p[col] = end_point[col] else: i_p = start_point i_p["timestamps"] = [interpolate_timestamp] return pa.Table.from_pydict(i_p)
def is_sample_interval_invalid(self) ‑> bool
-
:return: True if sample interval is np.nan or equal to 0.0
Expand source code
def is_sample_interval_invalid(self) -> bool: """ :return: True if sample interval is np.nan or equal to 0.0 """ return np.isnan(self._sample_interval_s) or self._sample_interval_s == 0.0
def is_sample_rate_fixed(self) ‑> bool
-
:return: true if sample rate of sensor is constant
Expand source code
def is_sample_rate_fixed(self) -> bool: """ :return: true if sample rate of sensor is constant """ return self._is_sample_rate_fixed
def is_save_to_disk(self) ‑> bool
-
:return: True if sensor will be saved to disk
Expand source code
def is_save_to_disk(self) -> bool: """ :return: True if sensor will be saved to disk """ return self._fs_writer.is_use_disk()
def is_timestamps_altered(self) ‑> bool
-
:return: true if timestamps have been changed from original data values
Expand source code
def is_timestamps_altered(self) -> bool: """ :return: true if timestamps have been changed from original data values """ return self._timestamps_altered
def last_data_timestamp(self) ‑> float
-
:return: timestamp of the last data point or np.nan if no timestamps
Expand source code
def last_data_timestamp(self) -> float: """ :return: timestamp of the last data point or np.nan if no timestamps """ return self.data_timestamps()[-1]
def load(self, in_dir: str) ‑> SensorData
-
:param in_dir: structured directory with json metadata file to load :return: SensorData using data from files
Expand source code
def load(self, in_dir: str) -> "SensorData": """ :param in_dir: structured directory with json metadata file to load :return: SensorData using data from files """ file = get_json_file(in_dir) if file is None: st = SensorData("LoadError") st.append_error("File to load Sensor not found.") return self else: return self.from_json_file(in_dir, file)
def move_pyarrow_dir(self, new_dir: str) ‑> pathlib.Path
-
Move the sensor's pyarrow files to a new directory
:param new_dir: directory to save files into
Expand source code
def move_pyarrow_dir(self, new_dir: str) -> Path: """ Move the sensor's pyarrow files to a new directory :param new_dir: directory to save files into """ old_sensor_save_dir = self.save_dir() self.set_save_dir(os.path.join(new_dir, self._type.name)) for r, d, f in os.walk(old_sensor_save_dir): for file in f: self._fs_writer.create_dir() os.rename(os.path.join(old_sensor_save_dir, file), os.path.join(self.save_dir(), file)) return Path(self.save_dir())
def num_samples(self) ‑> int
-
:return: the number of rows (samples) in the dataframe
Expand source code
def num_samples(self) -> int: """ :return: the number of rows (samples) in the dataframe """ if self.pyarrow_table(): return self.pyarrow_table().num_rows return 0
def organize_and_update_stats(self, ptable: pyarrow.lib.Table) ‑> SensorData
-
sorts the data by timestamps, then if the sample rate is not fixed, recalculates the sample rate, interval, and interval std dev. If there is only one value, sets the sample rate, interval, and interval std dev to np.nan. Updates self with the new values
:param ptable: pyarrow table to update :return: updated version of self
Expand source code
def organize_and_update_stats(self, ptable: pa.Table) -> "SensorData": """ sorts the data by timestamps, then if the sample rate is not fixed, recalculates the sample rate, interval, and interval std dev. If there is only one value, sets the sample rate, interval, and interval std dev to np.nan. Updates self with the new values :param ptable: pyarrow table to update :return: updated version of self """ self.sort_by_data_timestamps(ptable) if not self._is_sample_rate_fixed: if self.num_samples() > 1: timestamp_diffs = np.diff(self.data_timestamps()) self._sample_interval_s = dtu.microseconds_to_seconds(float(np.mean(timestamp_diffs))) self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(timestamp_diffs))) self._sample_rate_hz = np.nan if self.is_sample_interval_invalid() else 1 / self._sample_interval_s else: self._sample_interval_s = np.nan self._sample_interval_std_s = np.nan self._sample_rate_hz = np.nan return self
def print_errors(self)
-
print all errors to screen
Expand source code
def print_errors(self): """ print all errors to screen """ self._errors.print()
def pyarrow_ds(self, base_dir: Optional[str] = None) ‑> pyarrow._dataset.Dataset
-
:param base_dir: optional directory to use when loading the dataset. if None, use self.save_dir() :return: the dataset stored in base_dir
Expand source code
def pyarrow_ds(self, base_dir: Optional[str] = None) -> ds.Dataset: """ :param base_dir: optional directory to use when loading the dataset. if None, use self.save_dir() :return: the dataset stored in base_dir """ if base_dir is None: base_dir = self.save_dir() return ds.dataset(base_dir, format="parquet", exclude_invalid_files=True)
def pyarrow_table(self) ‑> pyarrow.lib.Table
-
:return: the table defined by the _data property or the dataset stored in self.save_dir()
Expand source code
def pyarrow_table(self) -> pa.Table: """ :return: the table defined by the _data property or the dataset stored in self.save_dir() """ if self._data or self._fs_writer.is_use_mem(): return self._data return self.pyarrow_ds().to_table()
def sample_interval_s(self) ‑> float
-
:return: mean sample interval in seconds
Expand source code
def sample_interval_s(self) -> float: """ :return: mean sample interval in seconds """ return self._sample_interval_s
def sample_interval_std_s(self) ‑> float
-
:return: sample interval standard deviation in seconds
Expand source code
def sample_interval_std_s(self) -> float: """ :return: sample interval standard deviation in seconds """ return self._sample_interval_std_s
def sample_rate_hz(self) ‑> float
-
:return: sample rate in Hz
Expand source code
def sample_rate_hz(self) -> float: """ :return: sample rate in Hz """ return self._sample_rate_hz
def samples(self) ‑> numpy.ndarray
-
gets the non-timestamp samples of dataframe
:return: the data values of the dataframe as a numpy ndarray
Expand source code
def samples(self) -> np.ndarray: """ gets the non-timestamp samples of dataframe :return: the data values of the dataframe as a numpy ndarray """ return self.data_df().iloc[:, 2:].T.to_numpy()
def save(self, file_name: Optional[str] = None) ‑> Optional[pathlib.Path]
-
Saves the sensor to disk. Does nothing if saving is not enabled
:param file_name: Optional file name to save as. Do not include a file extension. Default None If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: The path to the saved file or None if unable to save.
Expand source code
def save(self, file_name: Optional[str] = None) -> Optional[Path]: """ Saves the sensor to disk. Does nothing if saving is not enabled :param file_name: Optional file name to save as. Do not include a file extension. Default None If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: The path to the saved file or None if unable to save. """ if self._fs_writer.is_save_disk(): return self.to_json_file(file_name) return None
def save_dir(self) ‑> str
-
:return: directory containing parquet files for the sensor
Expand source code
def save_dir(self) -> str: """ :return: directory containing parquet files for the sensor """ return self._fs_writer.save_dir()
def set_errors(self, errors: RedVoxExceptions)
-
sets the errors of the Sensor
:param errors: errors to set
Expand source code
def set_errors(self, errors: RedVoxExceptions): """ sets the errors of the Sensor :param errors: errors to set """ self._errors = errors
def set_file_name(self, new_file: Optional[str] = None)
-
- set the pyarrow file name or use the default: {sensor_type}_{int(first_timestamp)}
- Do not give an extension
:param new_file: optional file name to change to; default None (use default name)
Expand source code
def set_file_name(self, new_file: Optional[str] = None): """ * set the pyarrow file name or use the default: {sensor_type}_{int(first_timestamp)} * Do not give an extension :param new_file: optional file name to change to; default None (use default name) """ self._fs_writer.file_name = new_file if new_file else f"{self._type.name}_{int(self.first_data_timestamp())}"
def set_gaps(self, gaps: List[Tuple])
-
sets the gaps of the Sensor
:param gaps: gaps to set
Expand source code
def set_gaps(self, gaps: List[Tuple]): """ sets the gaps of the Sensor :param gaps: gaps to set """ self._gaps = gaps
def set_original_timestamps(self)
-
converts all timestamps in the sensor to the original values from the data
Expand source code
def set_original_timestamps(self): """ converts all timestamps in the sensor to the original values from the data """ self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", self.unaltered_data_timestamps())) self._timestamps_altered = False
def set_save_dir(self, new_dir: str = '.')
-
set the pyarrow directory or use the default: "." (current directory)
:param new_dir: the directory to change to; default "." (use current directory)
Expand source code
def set_save_dir(self, new_dir: str = "."): """ set the pyarrow directory or use the default: "." (current directory) :param new_dir: the directory to change to; default "." (use current directory) """ self._fs_writer.base_dir = new_dir
def set_save_mode(self, new_save_mode: FileSystemSaveMode)
-
changes the save mode to new_save_mode
:param new_save_mode: FileSystemSaveMode to change to
Expand source code
def set_save_mode(self, new_save_mode: FileSystemSaveMode): """ changes the save mode to new_save_mode :param new_save_mode: FileSystemSaveMode to change to """ self._fs_writer.set_save_mode(new_save_mode)
def set_save_to_disk(self, save: bool)
-
:param save: If True, save to disk
Expand source code
def set_save_to_disk(self, save: bool): """ :param save: If True, save to disk """ self._fs_writer.set_use_disk(save)
def set_use_temp_dir(self, use_temp_dir: bool = False)
-
:param use_temp_dir: if True, use temp dir to save data. default False
Expand source code
def set_use_temp_dir(self, use_temp_dir: bool = False): """ :param use_temp_dir: if True, use temp dir to save data. default False """ self._fs_writer.set_use_temp(use_temp_dir)
def sort_by_data_timestamps(self, ptable: pyarrow.lib.Table, ascending: bool = True)
-
sorts the data based on timestamps
:param ptable: pyarrow table to sort :param ascending: if True, timestamps are sorted in ascending order, else sort by descending order
Expand source code
def sort_by_data_timestamps(self, ptable: pa.Table, ascending: bool = True): """ sorts the data based on timestamps :param ptable: pyarrow table to sort :param ascending: if True, timestamps are sorted in ascending order, else sort by descending order """ if ascending: order = "ascending" else: order = "descending" data = pc.take(ptable, pc.sort_indices(ptable, sort_keys=[("timestamps", order)])) self.write_pyarrow_table(data)
def to_json(self) ‑> str
-
:return: sensor as json string
Expand source code
def to_json(self) -> str: """ :return: sensor as json string """ return io.to_json(self)
def to_json_file(self, file_name: Optional[str] = None) ‑> pathlib.Path
-
saves the sensor as json and data in the same directory.
:param file_name: the optional base file name. Do not include a file extension. If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: path to json file
Expand source code
def to_json_file(self, file_name: Optional[str] = None) -> Path: """ saves the sensor as json and data in the same directory. :param file_name: the optional base file name. Do not include a file extension. If None, a default file name is created using this format: [sensor_type]_[first_timestamp].json :return: path to json file """ self.write_pyarrow_table(self.pyarrow_table()) return io.to_json_file(self, file_name)
def type(self) ‑> SensorType
-
:return: type of sensor
Expand source code
def type(self) -> SensorType: """ :return: type of sensor """ return self._type
def type_as_str(self) ‑> str
-
gets the sensor type as a string
:return: sensor type of the sensor as a string
Expand source code
def type_as_str(self) -> str: """ gets the sensor type as a string :return: sensor type of the sensor as a string """ return self._type.name
def unaltered_data_timestamps(self) ‑>
-
:return: the unaltered timestamps as a numpy array
Expand source code
def unaltered_data_timestamps(self) -> np.array: """ :return: the unaltered timestamps as a numpy array """ if "unaltered_timestamps" in self.pyarrow_table().schema.names: return self.pyarrow_table()["unaltered_timestamps"].to_numpy() else: return np.array([np.nan])
def update_data_timestamps(self, offset_model: OffsetModel)
-
updates the timestamps of the data points
:param offset_model: model used to update the timestamps
Expand source code
def update_data_timestamps(self, offset_model: om.OffsetModel): """ updates the timestamps of the data points :param offset_model: model used to update the timestamps """ slope = ( dtu.seconds_to_microseconds(self._sample_interval_s) * (1 + offset_model.slope) if self._use_offset_model else dtu.seconds_to_microseconds(self._sample_interval_s) ) if self._type == SensorType.AUDIO: # use the model to update the first timestamp or add the best offset (model's intercept value) timestamps = pa.array( calc_evenly_sampled_timestamps( offset_model.update_time(self.unaltered_data_timestamps()[0], self._use_offset_model), self.num_samples(), slope, ) ) else: timestamps = pa.array( offset_model.update_timestamps(self.unaltered_data_timestamps(), self._use_offset_model) ) self.write_pyarrow_table(self.pyarrow_table().set_column(0, "timestamps", timestamps)) time_diffs = np.floor(np.diff(self.data_timestamps())) if len(time_diffs) > 1: self._sample_interval_s = dtu.microseconds_to_seconds(slope) if self._sample_interval_s > 0: self._sample_rate_hz = 1 / self._sample_interval_s self._sample_interval_std_s = dtu.microseconds_to_seconds(float(np.std(time_diffs))) self._timestamps_altered = True
def used_offset_model(self) ‑> bool
-
:return: true if an offset model was used to perform timestamp corrections
Expand source code
def used_offset_model(self) -> bool: """ :return: true if an offset model was used to perform timestamp corrections """ return self._use_offset_model
def write_pyarrow_table(self, table: pyarrow.lib.Table, update_file_name: Optional[bool] = True)
-
saves the pyarrow table to disk or to memory.
- if there is no data or there is no column named timestamps in the table, an error will be created
- if writing to disk, uses a default filename: {sensor_type}_{first_timestamp}.parquet
- uses the directory defined by self.save_dir(). Creates the directory if it doesn't exist and removes any existing parquet files from the directory if it exists
:param table: the table to write :param update_file_name: if True, updates the file name to match the new data. Default True
Expand source code
def write_pyarrow_table(self, table: pa.Table, update_file_name: Optional[bool] = True): """ saves the pyarrow table to disk or to memory. * if there is no data or there is no column named timestamps in the table, an error will be created * if writing to disk, uses a default filename: {sensor_type}_{first_timestamp}.parquet * uses the directory defined by self.save_dir(). Creates the directory if it doesn't exist and removes any existing parquet files from the directory if it exists :param table: the table to write :param update_file_name: if True, updates the file name to match the new data. Default True """ if table.num_rows < 1 or "timestamps" not in table.schema.names: self._errors.append("Attempted to write invalid table.") elif self._fs_writer.is_save_disk(): self._fs_writer.create_dir() if update_file_name: self.set_file_name(f"{self.type().name}_{int(table['timestamps'][0].as_py())}") pq.write_table(table, self.full_path()) self._data = None else: self._data = table
class SensorType (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
Enumeration of possible types of sensors to read data from
Expand source code
class SensorType(enum.Enum): """ Enumeration of possible types of sensors to read data from """ UNKNOWN_SENSOR = 0 # unknown sensor ACCELEROMETER = 1 # meters/second^2 AMBIENT_TEMPERATURE = 2 # degrees Celsius AUDIO = 3 # normalized counts COMPRESSED_AUDIO = 4 # bytes (codec specific) GRAVITY = 5 # meters/second^2 GYROSCOPE = 6 # radians/second IMAGE = 7 # bytes (codec specific) LIGHT = 8 # lux LINEAR_ACCELERATION = 9 # meters/second^2 LOCATION = 10 # See standard MAGNETOMETER = 11 # microtesla ORIENTATION = 12 # radians PRESSURE = 13 # kilopascal PROXIMITY = 14 # on, off, cm RELATIVE_HUMIDITY = 15 # percentage ROTATION_VECTOR = 16 # Unitless INFRARED = 17 # this is proximity STATION_HEALTH = 18 # Health sensors: battery charge and current level, phone internal temperature, network source and strength, # available RAM of the system, cell service status, amount of hard disk space left, power charging state # Wi-Fi lock state, cpu utilization, screen state, and screen brightness BEST_LOCATION = 19 # See standard VELOCITY = 20 # m/s @staticmethod def type_from_str(type_str: str) -> "SensorType": """ converts a string to a sensor type :param type_str: string to convert :return: a sensor type, UNKNOWN_SENSOR is the default for invalid inputs """ if type_str.lower() == "audio" or type_str.lower() == "mic" or type_str.lower() == "microphone": return SensorType.AUDIO elif type_str.lower() == "accelerometer" or type_str.lower() == "accel": return SensorType.ACCELEROMETER elif type_str.lower() == "ambient_temperature": return SensorType.AMBIENT_TEMPERATURE elif type_str.lower() == "compressed_audio": return SensorType.COMPRESSED_AUDIO elif type_str.lower() == "gravity": return SensorType.GRAVITY elif type_str.lower() == "gyroscope" or type_str.lower() == "gyro": return SensorType.GYROSCOPE elif type_str.lower() == "image": return SensorType.IMAGE elif type_str.lower() == "light": return SensorType.LIGHT elif type_str.lower() == "linear_acceleration" or type_str.lower() == "linear_accel": return SensorType.LINEAR_ACCELERATION elif type_str.lower() == "location" or type_str.lower() == "loc": return SensorType.LOCATION elif type_str.lower() == "best_location" or type_str.lower() == "best_loc": return SensorType.BEST_LOCATION elif type_str.lower() == "magnetometer" or type_str.lower() == "mag": return SensorType.MAGNETOMETER elif type_str.lower() == "orientation": return SensorType.ORIENTATION elif type_str.lower() == "pressure" or type_str.lower() == "bar" or type_str.lower() == "barometer": return SensorType.PRESSURE elif type_str.lower() == "proximity" or type_str.lower() == "infrared": return SensorType.PROXIMITY elif type_str.lower() == "relative_humidity": return SensorType.RELATIVE_HUMIDITY elif type_str.lower() == "rotation_vector": return SensorType.ROTATION_VECTOR elif type_str.lower() == "velocity": return SensorType.VELOCITY else: return SensorType.UNKNOWN_SENSOR
Ancestors
- enum.Enum
Class variables
var ACCELEROMETER
var AMBIENT_TEMPERATURE
var AUDIO
var BEST_LOCATION
var COMPRESSED_AUDIO
var GRAVITY
var GYROSCOPE
var IMAGE
var INFRARED
var LIGHT
var LINEAR_ACCELERATION
var LOCATION
var MAGNETOMETER
var ORIENTATION
var PRESSURE
var PROXIMITY
var RELATIVE_HUMIDITY
var ROTATION_VECTOR
var STATION_HEALTH
var UNKNOWN_SENSOR
var VELOCITY
Static methods
def type_from_str(type_str: str) ‑> SensorType
-
converts a string to a sensor type
:param type_str: string to convert :return: a sensor type, UNKNOWN_SENSOR is the default for invalid inputs
Expand source code
@staticmethod def type_from_str(type_str: str) -> "SensorType": """ converts a string to a sensor type :param type_str: string to convert :return: a sensor type, UNKNOWN_SENSOR is the default for invalid inputs """ if type_str.lower() == "audio" or type_str.lower() == "mic" or type_str.lower() == "microphone": return SensorType.AUDIO elif type_str.lower() == "accelerometer" or type_str.lower() == "accel": return SensorType.ACCELEROMETER elif type_str.lower() == "ambient_temperature": return SensorType.AMBIENT_TEMPERATURE elif type_str.lower() == "compressed_audio": return SensorType.COMPRESSED_AUDIO elif type_str.lower() == "gravity": return SensorType.GRAVITY elif type_str.lower() == "gyroscope" or type_str.lower() == "gyro": return SensorType.GYROSCOPE elif type_str.lower() == "image": return SensorType.IMAGE elif type_str.lower() == "light": return SensorType.LIGHT elif type_str.lower() == "linear_acceleration" or type_str.lower() == "linear_accel": return SensorType.LINEAR_ACCELERATION elif type_str.lower() == "location" or type_str.lower() == "loc": return SensorType.LOCATION elif type_str.lower() == "best_location" or type_str.lower() == "best_loc": return SensorType.BEST_LOCATION elif type_str.lower() == "magnetometer" or type_str.lower() == "mag": return SensorType.MAGNETOMETER elif type_str.lower() == "orientation": return SensorType.ORIENTATION elif type_str.lower() == "pressure" or type_str.lower() == "bar" or type_str.lower() == "barometer": return SensorType.PRESSURE elif type_str.lower() == "proximity" or type_str.lower() == "infrared": return SensorType.PROXIMITY elif type_str.lower() == "relative_humidity": return SensorType.RELATIVE_HUMIDITY elif type_str.lower() == "rotation_vector": return SensorType.ROTATION_VECTOR elif type_str.lower() == "velocity": return SensorType.VELOCITY else: return SensorType.UNKNOWN_SENSOR
class StationHealthSensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Station Health specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class StationHealthSensor(SensorData): """ Station Health specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.STATION_HEALTH, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_battery_charge_remaining_data(self) -> np.array: """ :return: battery charge remaining data as numpy array """ return super().get_data_channel("battery_charge_remaining") def get_valid_battery_charge_remaining_data(self) -> np.array: """ :return: non-nan battery charge remaining data as numpy array """ return super().get_valid_data_channel_values("battery_charge_remaining") def get_battery_current_strength_data(self) -> np.array: """ :return: battery current strength data as numpy array """ return super().get_data_channel("battery_current_strength") def get_valid_battery_current_strength_data(self) -> np.array: """ :return: non-nan battery current strength data as numpy array """ return super().get_valid_data_channel_values("battery_current_strength") def get_internal_temp_c_data(self) -> np.array: """ :return: internal temperature celsius data as numpy array """ return super().get_data_channel("internal_temp_c") def get_valid_internal_temp_c_data(self) -> np.array: """ :return: non-nan internal temperature celsius data as numpy array """ return super().get_valid_data_channel_values("internal_temp_c") def get_network_type_data(self) -> List[str]: """ :return: network type data as list of strings """ return super()._get_non_numeric_data_channel("network_type") def get_valid_network_type_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan network type data as list of strings """ pass # return super().get_valid_data_channel_values('network_type') def get_network_strength_data(self) -> np.array: """ :return: network strength data as numpy array """ return super().get_data_channel("network_strength") def get_valid_network_strength_data(self) -> np.array: """ :return: non-nan network strength data as numpy array """ return super().get_valid_data_channel_values("network_strength") def get_power_state_data(self) -> List[str]: """ :return: power state data as list of strings """ return super()._get_non_numeric_data_channel("power_state") def get_valid_power_state_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan power state data as list of strings """ pass # return super().get_valid_data_channel_values('power_state') def get_avail_ram_data(self) -> np.array: """ :return: available RAM data as numpy array """ return super().get_data_channel("avail_ram") def get_valid_avail_ram_data(self) -> np.array: """ :return: non-nan available RAM data as numpy array """ return super().get_valid_data_channel_values("avail_ram") def get_avail_disk_data(self) -> np.array: """ :return: available disk space data as numpy array """ return super().get_data_channel("avail_disk") def get_valid_avail_disk_data(self) -> np.array: """ :return: non-nan available disk space data as numpy array """ return super().get_valid_data_channel_values("avail_disk") def get_cell_service_data(self) -> List[str]: """ :return: cell service data as list of strings """ return super()._get_non_numeric_data_channel("cell_service") def get_valid_cell_service_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan cell service data as list of strings """ pass # return super().get_valid_data_channel_values('cell_service') def get_cpu_utilization_data(self) -> np.array: """ :return: CPU utilization data as numpy array """ return super().get_data_channel("cpu_utilization") def get_valid_cpu_utilization_data(self) -> np.array: """ :return: non-nan CPU utilization data as numpy array """ return super().get_valid_data_channel_values("cpu_utilization") def get_wifi_wake_lock_data(self) -> List[str]: """ :return: Wi-Fi wake lock data as list of strings """ return super()._get_non_numeric_data_channel("wifi_wake_lock") def get_valid_wifi_wake_lock_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan Wi-Fi wake lock data as list of strings """ pass # return super().get_valid_data_channel_values('wifi_wake_lock') def get_screen_state_data(self) -> List[str]: """ :return: screen state data as list of strings """ return super()._get_non_numeric_data_channel("screen_state") def get_valid_screen_state_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan screen state data as list of strings """ pass # return super().get_valid_data_channel_values('screen_state') def get_screen_brightness_data(self) -> np.array: """ :return: screen brightness data as numpy array """ return super().get_data_channel("screen_brightness") def get_valid_screen_brightness_data(self) -> np.array: """ :return: non-nan screen brightness data as numpy array """ return super().get_valid_data_channel_values("screen_brightness")
Ancestors
Methods
def get_avail_disk_data(self) ‑>
-
:return: available disk space data as numpy array
Expand source code
def get_avail_disk_data(self) -> np.array: """ :return: available disk space data as numpy array """ return super().get_data_channel("avail_disk")
def get_avail_ram_data(self) ‑>
-
:return: available RAM data as numpy array
Expand source code
def get_avail_ram_data(self) -> np.array: """ :return: available RAM data as numpy array """ return super().get_data_channel("avail_ram")
def get_battery_charge_remaining_data(self) ‑>
-
:return: battery charge remaining data as numpy array
Expand source code
def get_battery_charge_remaining_data(self) -> np.array: """ :return: battery charge remaining data as numpy array """ return super().get_data_channel("battery_charge_remaining")
def get_battery_current_strength_data(self) ‑>
-
:return: battery current strength data as numpy array
Expand source code
def get_battery_current_strength_data(self) -> np.array: """ :return: battery current strength data as numpy array """ return super().get_data_channel("battery_current_strength")
def get_cell_service_data(self) ‑> List[str]
-
:return: cell service data as list of strings
Expand source code
def get_cell_service_data(self) -> List[str]: """ :return: cell service data as list of strings """ return super()._get_non_numeric_data_channel("cell_service")
def get_cpu_utilization_data(self) ‑>
-
:return: CPU utilization data as numpy array
Expand source code
def get_cpu_utilization_data(self) -> np.array: """ :return: CPU utilization data as numpy array """ return super().get_data_channel("cpu_utilization")
def get_internal_temp_c_data(self) ‑>
-
:return: internal temperature celsius data as numpy array
Expand source code
def get_internal_temp_c_data(self) -> np.array: """ :return: internal temperature celsius data as numpy array """ return super().get_data_channel("internal_temp_c")
def get_network_strength_data(self) ‑>
-
:return: network strength data as numpy array
Expand source code
def get_network_strength_data(self) -> np.array: """ :return: network strength data as numpy array """ return super().get_data_channel("network_strength")
def get_network_type_data(self) ‑> List[str]
-
:return: network type data as list of strings
Expand source code
def get_network_type_data(self) -> List[str]: """ :return: network type data as list of strings """ return super()._get_non_numeric_data_channel("network_type")
def get_power_state_data(self) ‑> List[str]
-
:return: power state data as list of strings
Expand source code
def get_power_state_data(self) -> List[str]: """ :return: power state data as list of strings """ return super()._get_non_numeric_data_channel("power_state")
def get_screen_brightness_data(self) ‑>
-
:return: screen brightness data as numpy array
Expand source code
def get_screen_brightness_data(self) -> np.array: """ :return: screen brightness data as numpy array """ return super().get_data_channel("screen_brightness")
def get_screen_state_data(self) ‑> List[str]
-
:return: screen state data as list of strings
Expand source code
def get_screen_state_data(self) -> List[str]: """ :return: screen state data as list of strings """ return super()._get_non_numeric_data_channel("screen_state")
def get_valid_avail_disk_data(self) ‑>
-
:return: non-nan available disk space data as numpy array
Expand source code
def get_valid_avail_disk_data(self) -> np.array: """ :return: non-nan available disk space data as numpy array """ return super().get_valid_data_channel_values("avail_disk")
def get_valid_avail_ram_data(self) ‑>
-
:return: non-nan available RAM data as numpy array
Expand source code
def get_valid_avail_ram_data(self) -> np.array: """ :return: non-nan available RAM data as numpy array """ return super().get_valid_data_channel_values("avail_ram")
def get_valid_battery_charge_remaining_data(self) ‑>
-
:return: non-nan battery charge remaining data as numpy array
Expand source code
def get_valid_battery_charge_remaining_data(self) -> np.array: """ :return: non-nan battery charge remaining data as numpy array """ return super().get_valid_data_channel_values("battery_charge_remaining")
def get_valid_battery_current_strength_data(self) ‑>
-
:return: non-nan battery current strength data as numpy array
Expand source code
def get_valid_battery_current_strength_data(self) -> np.array: """ :return: non-nan battery current strength data as numpy array """ return super().get_valid_data_channel_values("battery_current_strength")
def get_valid_cell_service_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan cell service data as list of strings
Expand source code
def get_valid_cell_service_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan cell service data as list of strings """ pass # return super().get_valid_data_channel_values('cell_service')
def get_valid_cpu_utilization_data(self) ‑>
-
:return: non-nan CPU utilization data as numpy array
Expand source code
def get_valid_cpu_utilization_data(self) -> np.array: """ :return: non-nan CPU utilization data as numpy array """ return super().get_valid_data_channel_values("cpu_utilization")
def get_valid_internal_temp_c_data(self) ‑>
-
:return: non-nan internal temperature celsius data as numpy array
Expand source code
def get_valid_internal_temp_c_data(self) -> np.array: """ :return: non-nan internal temperature celsius data as numpy array """ return super().get_valid_data_channel_values("internal_temp_c")
def get_valid_network_strength_data(self) ‑>
-
:return: non-nan network strength data as numpy array
Expand source code
def get_valid_network_strength_data(self) -> np.array: """ :return: non-nan network strength data as numpy array """ return super().get_valid_data_channel_values("network_strength")
def get_valid_network_type_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan network type data as list of strings
Expand source code
def get_valid_network_type_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan network type data as list of strings """ pass # return super().get_valid_data_channel_values('network_type')
def get_valid_power_state_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan power state data as list of strings
Expand source code
def get_valid_power_state_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan power state data as list of strings """ pass # return super().get_valid_data_channel_values('power_state')
def get_valid_screen_brightness_data(self) ‑>
-
:return: non-nan screen brightness data as numpy array
Expand source code
def get_valid_screen_brightness_data(self) -> np.array: """ :return: non-nan screen brightness data as numpy array """ return super().get_valid_data_channel_values("screen_brightness")
def get_valid_screen_state_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan screen state data as list of strings
Expand source code
def get_valid_screen_state_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan screen state data as list of strings """ pass # return super().get_valid_data_channel_values('screen_state')
def get_valid_wifi_wake_lock_data(self) ‑> List[str]
-
NOT IMPLEMENTED :return: non-nan Wi-Fi wake lock data as list of strings
Expand source code
def get_valid_wifi_wake_lock_data(self) -> List[str]: """ NOT IMPLEMENTED :return: non-nan Wi-Fi wake lock data as list of strings """ pass # return super().get_valid_data_channel_values('wifi_wake_lock')
def get_wifi_wake_lock_data(self) ‑> List[str]
-
:return: Wi-Fi wake lock data as list of strings
Expand source code
def get_wifi_wake_lock_data(self) -> List[str]: """ :return: Wi-Fi wake lock data as list of strings """ return super()._get_non_numeric_data_channel("wifi_wake_lock")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table
class VelocitySensor (sensor_name: str, sensor_data: Optional[pyarrow.lib.Table] = None, sample_rate_hz: float = nan, sample_interval_s: float = nan, sample_interval_std_s: float = nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = '.', gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False)
-
Rotation vector specific functions
initialize the sensor data with params
:param sensor_name: name of the sensor. REQUIRED :param sensor_type: enumerated type of the sensor, default SensorType.UNKNOWN_SENSOR :param sensor_data: Optional pyarrow table with the timestamps and sensor data; first column is always the timestamps, the other columns are specific metadata and data channels in the sensor default is None :param sample_rate_hz: sample rate in hz of the data :param sample_interval_s: sample interval in seconds of the data :param sample_interval_std_s: std dev of sample interval in seconds of the data :param is_sample_rate_fixed: if True, sample rate is constant for all data, default False :param are_timestamps_altered: if True, timestamps in the sensor have been altered from their original values, default False :param calculate_stats: if True, calculate sample_rate, sample_interval_s, and sample_interval_std_s default False :param use_offset_model_for_correction: if True, use an offset model to correct timestamps, otherwise use the best known offset. default False :param save_data: if True, save the data of the sensor to disk, otherwise use a temporary dir. default False :param base_dir: directory to save pyarrow table, default "." (current dir). internally uses a temporary dir if not saving data :param gaps: Optional list of timestamp pairs of data points on the edge of gaps in the data. anything between the pairs of points exists to maintain sample rate and are not considered valid points. Default None :param show_errors: if True, show any errors encountered. Default False :param use_temp_dir: if True, use a temp directory to save data. Default False
Expand source code
class VelocitySensor(SensorData): """ Rotation vector specific functions """ def __init__( self, sensor_name: str, sensor_data: Optional[pa.Table] = None, sample_rate_hz: float = np.nan, sample_interval_s: float = np.nan, sample_interval_std_s: float = np.nan, is_sample_rate_fixed: bool = False, are_timestamps_altered: bool = False, calculate_stats: bool = False, use_offset_model_for_correction: bool = False, save_data: bool = False, base_dir: str = ".", gaps: Optional[List[Tuple[float, float]]] = None, show_errors: bool = False, ): super().__init__( sensor_name, sensor_data, SensorType.VELOCITY, sample_rate_hz, sample_interval_s, sample_interval_std_s, is_sample_rate_fixed, are_timestamps_altered, calculate_stats, use_offset_model_for_correction, save_data, base_dir, gaps, show_errors, ) def get_velocity_x_data(self) -> np.array: """ :return: velocity x channel data as numpy array """ return super().get_data_channel("velocity_x") def get_valid_velocity_x_data(self) -> np.array: """ :return: non-nan velocity x channel data as numpy array """ return super().get_valid_data_channel_values("velocity_x") def get_velocity_y_data(self) -> np.array: """ :return: velocity y channel data as numpy array """ return super().get_data_channel("velocity_y") def get_valid_velocity_y_data(self) -> np.array: """ :return: non-nan velocity y channel data as numpy array """ return super().get_valid_data_channel_values("velocity_y") def get_velocity_z_data(self) -> np.array: """ :return: velocity z channel data as numpy array """ return super().get_data_channel("velocity_z") def get_valid_velocity_z_data(self) -> np.array: """ :return: non-nan velocity z channel data as numpy array """ return super().get_valid_data_channel_values("velocity_z")
Ancestors
Methods
def get_valid_velocity_x_data(self) ‑>
-
:return: non-nan velocity x channel data as numpy array
Expand source code
def get_valid_velocity_x_data(self) -> np.array: """ :return: non-nan velocity x channel data as numpy array """ return super().get_valid_data_channel_values("velocity_x")
def get_valid_velocity_y_data(self) ‑>
-
:return: non-nan velocity y channel data as numpy array
Expand source code
def get_valid_velocity_y_data(self) -> np.array: """ :return: non-nan velocity y channel data as numpy array """ return super().get_valid_data_channel_values("velocity_y")
def get_valid_velocity_z_data(self) ‑>
-
:return: non-nan velocity z channel data as numpy array
Expand source code
def get_valid_velocity_z_data(self) -> np.array: """ :return: non-nan velocity z channel data as numpy array """ return super().get_valid_data_channel_values("velocity_z")
def get_velocity_x_data(self) ‑>
-
:return: velocity x channel data as numpy array
Expand source code
def get_velocity_x_data(self) -> np.array: """ :return: velocity x channel data as numpy array """ return super().get_data_channel("velocity_x")
def get_velocity_y_data(self) ‑>
-
:return: velocity y channel data as numpy array
Expand source code
def get_velocity_y_data(self) -> np.array: """ :return: velocity y channel data as numpy array """ return super().get_data_channel("velocity_y")
def get_velocity_z_data(self) ‑>
-
:return: velocity z channel data as numpy array
Expand source code
def get_velocity_z_data(self) -> np.array: """ :return: velocity z channel data as numpy array """ return super().get_data_channel("velocity_z")
Inherited members
SensorData
:append_data
append_error
append_sensor
as_dict
class_from_type
data_channels
data_df
data_timestamps
empty_data_table
errors
extend_errors
file_name
first_data_timestamp
from_dict
from_dir
from_json_file
fs_writer
full_file_name
full_path
gaps
get_data_channel
get_valid_data_channel_values
interpolate
is_sample_interval_invalid
is_sample_rate_fixed
is_save_to_disk
is_timestamps_altered
last_data_timestamp
load
move_pyarrow_dir
num_samples
organize_and_update_stats
print_errors
pyarrow_ds
pyarrow_table
sample_interval_s
sample_interval_std_s
sample_rate_hz
samples
save
save_dir
set_errors
set_file_name
set_gaps
set_original_timestamps
set_save_dir
set_save_mode
set_save_to_disk
set_use_temp_dir
sort_by_data_timestamps
to_json
to_json_file
type
type_as_str
unaltered_data_timestamps
update_data_timestamps
used_offset_model
write_pyarrow_table