Module redvox.api900.stat_utils
utilities to calculate std deviation, mean, and median for arrays
Expand source code
"""
utilities to calculate std deviation, mean, and median for arrays
"""
from typing import Tuple
# noinspection Mypy
import numpy
def calc_utils(values: numpy.array) -> Tuple[float, float, float]:
"""
returns the std deviation, the mean, and the median of an array
:param values: array to calculate
:return: std deviation, mean, median
"""
mean = numpy.mean(values, dtype=float)
stddev = numpy.std(values, dtype=float)
median = numpy.median(values)
return stddev, mean, median
def calc_utils_timeseries(values: numpy.array) -> Tuple[float, float, float]:
"""
returns the std deviation, mean and median of an array representing uneven timestamps
creates a new array that contains the differences between two consecutive timestamps
:param values: array containing uneven timestamps
:return: std deviation, mean, median
"""
if len(values) == 1:
return 0.0, 0.0, 0.0
values = numpy.diff(values) # calculate differences
mean = numpy.mean(values)
stddev = numpy.std(values)
median = numpy.median(values)
return stddev, mean, median
Functions
def calc_utils(values:
) ‑> Tuple[float, float, float] -
returns the std deviation, the mean, and the median of an array :param values: array to calculate :return: std deviation, mean, median
Expand source code
def calc_utils(values: numpy.array) -> Tuple[float, float, float]: """ returns the std deviation, the mean, and the median of an array :param values: array to calculate :return: std deviation, mean, median """ mean = numpy.mean(values, dtype=float) stddev = numpy.std(values, dtype=float) median = numpy.median(values) return stddev, mean, median
def calc_utils_timeseries(values:
) ‑> Tuple[float, float, float] -
returns the std deviation, mean and median of an array representing uneven timestamps creates a new array that contains the differences between two consecutive timestamps :param values: array containing uneven timestamps :return: std deviation, mean, median
Expand source code
def calc_utils_timeseries(values: numpy.array) -> Tuple[float, float, float]: """ returns the std deviation, mean and median of an array representing uneven timestamps creates a new array that contains the differences between two consecutive timestamps :param values: array containing uneven timestamps :return: std deviation, mean, median """ if len(values) == 1: return 0.0, 0.0, 0.0 values = numpy.diff(values) # calculate differences mean = numpy.mean(values) stddev = numpy.std(values) median = numpy.median(values) return stddev, mean, median